video2x/bin/upscaler.py

310 lines
12 KiB
Python
Raw Normal View History

2018-12-11 20:52:48 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Name: Video2X Upscaler
Author: K4YT3X
Date Created: December 10, 2018
Last Modified: March 4, 2019
2018-12-11 20:52:48 +00:00
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
available at: https://www.gnu.org/licenses/gpl-3.0.txt
2019-01-09 16:42:29 +00:00
(C) 2018-2019 K4YT3X
2018-12-11 20:52:48 +00:00
"""
from avalon_framework import Avalon
from exceptions import *
2018-12-11 20:52:48 +00:00
from ffmpeg import Ffmpeg
from fractions import Fraction
from tqdm import tqdm
2019-02-08 21:48:35 +00:00
from waifu2x_caffe import Waifu2xCaffe
from waifu2x_converter import Waifu2xConverter
2018-12-11 20:52:48 +00:00
import os
2019-02-08 21:48:35 +00:00
import re
2018-12-11 20:52:48 +00:00
import shutil
import tempfile
import threading
import time
2018-12-11 20:52:48 +00:00
2019-03-04 00:55:43 +00:00
MODELS_AVAILABLE = ['upconv_7_anime_style_art_rgb', 'upconv_7_photo', 'anime_style_art_rgb', 'photo',
'anime_style_art_y', 'upresnet10', 'cunet']
2018-12-11 20:52:48 +00:00
class Upscaler:
def __init__(self, input_video, output_video, method, waifu2x_path, ffmpeg_path, waifu2x_driver='waifu2x_caffe', ffmpeg_arguments=[], ffmpeg_hwaccel='auto', output_width=False, output_height=False, ratio=False, model_type='anime_style_art_rgb', threads=3, video2x_cache_folder='{}\\video2x'.format(tempfile.gettempdir()), preserve_frames=False):
2018-12-11 20:52:48 +00:00
# Mandatory arguments
self.input_video = input_video
self.output_video = output_video
self.method = method
self.waifu2x_path = waifu2x_path
self.ffmpeg_path = ffmpeg_path
2019-02-08 21:48:35 +00:00
self.waifu2x_driver = waifu2x_driver
# Check sanity of waifu2x_driver option
if waifu2x_driver != 'waifu2x_caffe' and waifu2x_driver != 'waifu2x_converter':
raise Exception('Unrecognized waifu2x driver: {}'.format(waifu2x_driver))
2018-12-11 20:52:48 +00:00
# Optional arguments
self.ffmpeg_arguments = ffmpeg_arguments
self.ffmpeg_hwaccel = ffmpeg_hwaccel
self.output_width = output_width
self.output_height = output_height
2019-02-08 21:48:35 +00:00
self.ratio = ratio
2018-12-11 20:52:48 +00:00
self.model_type = model_type
self.threads = threads
# Create temporary folder/directories
self.video2x_cache_folder = video2x_cache_folder
self.extracted_frames_object = tempfile.TemporaryDirectory(dir=self.video2x_cache_folder)
self.extracted_frames = self.extracted_frames_object.name
Avalon.debug_info('Extracted frames are being saved to: {}'.format(self.extracted_frames))
self.upscaled_frames_object = tempfile.TemporaryDirectory(dir=self.video2x_cache_folder)
self.upscaled_frames = self.upscaled_frames_object.name
Avalon.debug_info('Upscaled frames are being saved to: {}'.format(self.upscaled_frames))
self.preserve_frames = preserve_frames
# If hardware acceleration enabled, append arguments
if self.ffmpeg_hwaccel:
self.ffmpeg_arguments.append('-hwaccel {}'.format(self.ffmpeg_hwaccel))
def cleanup(self):
# Delete temp directories when done
2019-02-08 21:48:35 +00:00
# Avalon framework cannot be used if python is shutting down
# Therefore, plain print is used
if not self.preserve_frames:
print('Cleaning up cache directory: {}'.format(self.extracted_frames))
self.extracted_frames_object.cleanup()
print('Cleaning up cache directory: {}'.format(self.upscaled_frames))
self.upscaled_frames_object.cleanup()
2018-12-11 20:52:48 +00:00
def _check_model_type(self, args):
""" Validate upscaling model
"""
if self.model_type not in MODELS_AVAILABLE:
raise InvalidModelType('Specified model type not available')
2018-12-11 20:52:48 +00:00
def _check_arguments(self):
# Check if arguments are valid / all necessary argument
# values are specified
if not self.input_video:
raise ArgumentError('You need to specify the video to process')
2019-02-08 21:48:35 +00:00
elif (not self.output_width or not self.output_height) and not self.ratio:
2018-12-11 20:52:48 +00:00
raise ArgumentError('You must specify output video width and height or upscale factor')
elif not self.output_video:
2018-12-11 20:52:48 +00:00
raise ArgumentError('You need to specify the output video name')
elif not self.method:
raise ArgumentError('You need to specify the enlarging processing unit')
def _progress_bar(self, extracted_frames_folders):
""" This method prints a progress bar
This method prints a progress bar by keeping track
of the amount of frames in the input directory/folder
and the output directory/folder. This is originally
suggested by @ArmandBernard.
"""
# Get number of extracted frames
total_frames = 0
for folder in extracted_frames_folders:
total_frames += len([f for f in os.listdir(folder) if f[-4:] == '.png'])
with tqdm(total=total_frames, ascii=True, desc='Upscaling Progress') as progress_bar:
# tqdm update method adds the value to the progress
# bar instead of setting the value. Therefore, a delta
# needs to be calculated.
previous_cycle_frames = 0
while not self.progress_bar_exit_signal:
try:
total_frames_upscaled = len([f for f in os.listdir(self.upscaled_frames) if f[-4:] == '.png'])
delta = total_frames_upscaled - previous_cycle_frames
previous_cycle_frames = total_frames_upscaled
# If upscaling is finished
if total_frames_upscaled >= total_frames:
return
# Adds the detla into the progress bar
progress_bar.update(delta)
except FileNotFoundError:
pass
time.sleep(1)
2018-12-11 20:52:48 +00:00
def _upscale_frames(self, w2):
""" Upscale video frames with waifu2x-caffe
This function upscales all the frames extracted
by ffmpeg using the waifu2x-caffe binary.
Arguments:
w2 {Waifu2x Object} -- initialized waifu2x object
"""
# Progress bar thread exit signal
self.progress_bar_exit_signal = False
2019-02-08 21:48:35 +00:00
# It's easier to do multi-threading with waifu2x_converter
# The number of threads can be passed directly to waifu2x_converter
if self.waifu2x_driver == 'waifu2x_converter':
progress_bar = threading.Thread(target=self._progress_bar, args=([self.extracted_frames],))
progress_bar.start()
2019-02-08 21:48:35 +00:00
w2.upscale(self.extracted_frames, self.upscaled_frames, self.ratio, self.threads)
for image in [f for f in os.listdir(self.upscaled_frames) if os.path.isfile(os.path.join(self.upscaled_frames, f))]:
renamed = re.sub('_\[.*-.*\]\[x(\d+(\.\d+)?)\]\.png', '.png', image)
shutil.move('{}\\{}'.format(self.upscaled_frames, image), '{}\\{}'.format(self.upscaled_frames, renamed))
self.progress_bar_exit_signal = True
progress_bar.join()
2019-02-08 21:48:35 +00:00
return
2018-12-11 20:52:48 +00:00
# Create a container for all upscaler threads
upscaler_threads = []
# List all images in the extracted frames
frames = [os.path.join(self.extracted_frames, f) for f in os.listdir(self.extracted_frames) if os.path.isfile(os.path.join(self.extracted_frames, f))]
# If we have less images than threads,
# create only the threads necessary
if len(frames) < self.threads:
self.threads = len(frames)
# Create a folder for each thread and append folder
# name into a list
thread_pool = []
thread_folders = []
2018-12-11 20:52:48 +00:00
for thread_id in range(self.threads):
thread_folder = '{}\\{}'.format(self.extracted_frames, str(thread_id))
thread_folders.append(thread_folder)
2018-12-11 20:52:48 +00:00
# Delete old folders and create new folders
if os.path.isdir(thread_folder):
shutil.rmtree(thread_folder)
os.mkdir(thread_folder)
# Append folder path into list
thread_pool.append((thread_folder, thread_id))
# Evenly distribute images into each folder
# until there is none left in the folder
for image in frames:
# Move image
shutil.move(image, thread_pool[0][0])
# Rotate list
thread_pool = thread_pool[-1:] + thread_pool[:-1]
# Create threads and start them
for thread_info in thread_pool:
# Create thread
thread = threading.Thread(target=w2.upscale, args=(thread_info[0], self.upscaled_frames, self.output_width, self.output_height))
2018-12-11 20:52:48 +00:00
thread.name = thread_info[1]
# Add threads into the pool
upscaler_threads.append(thread)
# Start progress bar in a different thread
progress_bar = threading.Thread(target=self._progress_bar, args=(thread_folders,))
progress_bar.start()
2018-12-11 20:52:48 +00:00
# Start all threads
for thread in upscaler_threads:
thread.start()
# Wait for threads to finish
for thread in upscaler_threads:
thread.join()
self.progress_bar_exit_signal = True
2018-12-11 20:52:48 +00:00
def run(self):
"""Main controller for Video2X
This function controls the flow of video conversion
and handles all necessary functions.
"""
# Parse arguments for waifu2x
# Check argument sanity
self._check_model_type(self.model_type)
self._check_arguments()
# Convert paths to absolute paths
self.input_video = os.path.abspath(self.input_video)
self.output_video = os.path.abspath(self.output_video)
# Add a forward slash to directory if not present
# otherwise there will be a format error
if self.ffmpeg_path[-1] != '/' and self.ffmpeg_path[-1] != '\\':
self.ffmpeg_path = '{}/'.format(self.ffmpeg_path)
# Check if FFMPEG and waifu2x are present
if not os.path.isdir(self.ffmpeg_path):
raise FileNotFoundError(self.ffmpeg_path)
2019-02-08 21:48:35 +00:00
if not os.path.isfile(self.waifu2x_path) and not os.path.isdir(self.waifu2x_path):
2018-12-11 20:52:48 +00:00
raise FileNotFoundError(self.waifu2x_path)
# Initialize objects for ffmpeg and waifu2x-caffe
fm = Ffmpeg(self.ffmpeg_path, self.ffmpeg_arguments)
2019-02-08 21:48:35 +00:00
# Initialize waifu2x driver
if self.waifu2x_driver == 'waifu2x_caffe':
w2 = Waifu2xCaffe(self.waifu2x_path, self.method, self.model_type)
elif self.waifu2x_driver == 'waifu2x_converter':
w2 = Waifu2xConverter(self.waifu2x_path)
else:
raise Exception('Unrecognized waifu2x driver: {}'.format(self.waifu2x_driver))
2018-12-11 20:52:48 +00:00
# Extract frames from video
fm.extract_frames(self.input_video, self.extracted_frames)
Avalon.info('Reading video information')
video_info = fm.get_video_info(self.input_video)
2018-12-11 20:52:48 +00:00
# Analyze original video with ffprobe and retrieve framerate
# width, height = info['streams'][0]['width'], info['streams'][0]['height']
# Find index of video stream
video_stream_index = None
for stream in video_info['streams']:
2018-12-11 20:52:48 +00:00
if stream['codec_type'] == 'video':
video_stream_index = stream['index']
break
# Exit if no video stream found
if video_stream_index is None:
Avalon.error('Aborting: No video stream found')
exit(1)
2018-12-11 20:52:48 +00:00
# Get average frame rate of video stream
framerate = float(Fraction(video_info['streams'][video_stream_index]['avg_frame_rate']))
2018-12-11 20:52:48 +00:00
Avalon.info('Framerate: {}'.format(framerate))
# Width/height will be coded width/height x upscale factor
2019-02-08 21:48:35 +00:00
if self.ratio:
coded_width = video_info['streams'][video_stream_index]['coded_width']
coded_height = video_info['streams'][video_stream_index]['coded_height']
2019-02-08 21:48:35 +00:00
self.output_width = self.ratio * coded_width
self.output_height = self.ratio * coded_height
2018-12-11 20:52:48 +00:00
# Upscale images one by one using waifu2x
Avalon.info('Starting to upscale extracted images')
self._upscale_frames(w2)
Avalon.info('Upscaling completed')
# Frames to Video
Avalon.info('Converting extracted frames into video')
# Use user defined output size
fm.convert_video(framerate, '{}x{}'.format(self.output_width, self.output_height), self.upscaled_frames)
2018-12-11 20:52:48 +00:00
Avalon.info('Conversion completed')
# Migrate audio tracks and subtitles
Avalon.info('Migrating audio tracks and subtitles to upscaled video')
fm.migrate_audio_tracks_subtitles(self.input_video, self.output_video, self.upscaled_frames)