video2x/bin/upscaler.py

255 lines
9.9 KiB
Python
Raw Normal View History

2018-12-11 20:52:48 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Name: Video2X Upscaler
Author: K4YT3X
Date Created: December 10, 2018
Last Modified: December 10, 2018
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
available at: https://www.gnu.org/licenses/gpl-3.0.txt
(C) 2018 K4YT3X
"""
from avalon_framework import Avalon
from ffmpeg import Ffmpeg
from fractions import Fraction
from waifu2x import Waifu2x
import json
import os
import psutil
import shutil
import subprocess
import tempfile
import threading
# Each thread might take up to 2.5 GB during initialization.
MEM_PER_THREAD = 2.5
class ArgumentError(Exception):
def __init__(self, message):
super().__init__(message)
class Upscaler:
def __init__(self, input_video, output_video, method, waifu2x_path, ffmpeg_path, ffmpeg_arguments=[], ffmpeg_hwaccel='gpu', output_width=False, output_height=False, factor=False, model_type='anime_style_art_rgb', threads=3):
# Mandatory arguments
self.input_video = input_video
self.output_video = output_video
self.method = method
self.waifu2x_path = waifu2x_path
self.ffmpeg_path = ffmpeg_path
# Optional arguments
self.ffmpeg_arguments = ffmpeg_arguments
self.ffmpeg_hwaccel = ffmpeg_hwaccel
self.output_width = output_width
self.output_height = output_height
self.factor = factor
self.model_type = model_type
self.threads = threads
# Make temporary directories
self.extracted_frames = tempfile.mkdtemp()
self.upscaled_frames = tempfile.mkdtemp()
def _get_video_info(self):
"""Gets input video information
returns input video information using ffprobe in dictionary.
"""
json_str = subprocess.check_output('\"{}ffprobe.exe\" -v quiet -print_format json -show_format -show_streams \"{}\"'.format(self.ffmpeg_path, self.input_video))
return json.loads(json_str.decode('utf-8'))
def _check_model_type(self, args):
""" Validate upscaling model
"""
models_available = ['upconv_7_anime_style_art_rgb', 'upconv_7_photo',
'anime_style_art_rgb', 'photo', 'anime_style_art_y']
if self.model_type not in models_available:
Avalon.error('Specified model type not found!')
Avalon.info('Available models:')
for model in models_available:
print(model)
exit(1)
def _check_arguments(self):
# Check if arguments are valid / all necessary argument
# values are specified
if not self.input_video:
raise ArgumentError('You need to specify the video to process')
elif (not self.output_width or not self.output_height) and not self.factor:
raise ArgumentError('You must specify output video width and height or upscale factor')
elif not self.video_output:
raise ArgumentError('You need to specify the output video name')
elif not self.method:
raise ArgumentError('You need to specify the enlarging processing unit')
def _check_memory(self):
""" Check usable memory
Warn the user if insufficient memory is available for
the number of threads that the user have chosen.
"""
memory_available = psutil.virtual_memory().available / (1024 ** 3)
# If user doesn't even have enough memory to run even one thread
if memory_available < MEM_PER_THREAD:
Avalon.warning('You might have an insufficient amount of memory available to run this program ({} GB)'.format(memory_available))
Avalon.warning('Proceed with caution')
# If memory available is less than needed, warn the user
elif memory_available < (MEM_PER_THREAD * self.threads):
Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB during initialization')
Avalon.warning('You demanded {} threads to be created, but you only have {} GB memory available'.format(self.threads, round(memory_available, 4)))
Avalon.warning('{} GB of memory is recommended for {} threads'.format(MEM_PER_THREAD * self.threads, self.threads))
Avalon.warning('With your current amount of memory available, {} threads is recommended'.format(int(memory_available // MEM_PER_THREAD)))
# Ask the user if he / she wants to change to the recommended
# number of threads
if Avalon.ask('Change to the recommended value?', True):
self.threads = int(memory_available // MEM_PER_THREAD)
else:
Avalon.warning('Proceed with caution')
def _upscale_frames(self, w2):
""" Upscale video frames with waifu2x-caffe
This function upscales all the frames extracted
by ffmpeg using the waifu2x-caffe binary.
Arguments:
w2 {Waifu2x Object} -- initialized waifu2x object
"""
# Create a container for all upscaler threads
upscaler_threads = []
# List all images in the extracted frames
frames = [os.path.join(self.extracted_frames, f) for f in os.listdir(self.extracted_frames) if os.path.isfile(os.path.join(self.extracted_frames, f))]
# If we have less images than threads,
# create only the threads necessary
if len(frames) < self.threads:
self.threads = len(frames)
# Create a folder for each thread and append folder
# name into a list
thread_pool = []
for thread_id in range(self.threads):
thread_folder = '{}\\{}'.format(self.extracted_frames, str(thread_id))
# Delete old folders and create new folders
if os.path.isdir(thread_folder):
shutil.rmtree(thread_folder)
os.mkdir(thread_folder)
# Append folder path into list
thread_pool.append((thread_folder, thread_id))
# Evenly distribute images into each folder
# until there is none left in the folder
for image in frames:
# Move image
shutil.move(image, thread_pool[0][0])
# Rotate list
thread_pool = thread_pool[-1:] + thread_pool[:-1]
# Create threads and start them
for thread_info in thread_pool:
# Create thread
thread = threading.Thread(target=w2.upscale, args=(thread_info[0], self.upscaled_frames, self.width, self.height))
thread.name = thread_info[1]
# Add threads into the pool
upscaler_threads.append(thread)
# Start all threads
for thread in upscaler_threads:
thread.start()
# Wait for threads to finish
for thread in upscaler_threads:
thread.join()
def run(self):
"""Main controller for Video2X
This function controls the flow of video conversion
and handles all necessary functions.
"""
# Parse arguments for waifu2x
# Check argument sanity
self._check_model_type(self.model_type)
self._check_arguments()
self._check_memory()
# Convert paths to absolute paths
self.input_video = os.path.abspath(self.input_video)
self.output_video = os.path.abspath(self.output_video)
# Add a forward slash to directory if not present
# otherwise there will be a format error
if self.ffmpeg_path[-1] != '/' and self.ffmpeg_path[-1] != '\\':
self.ffmpeg_path = '{}/'.format(self.ffmpeg_path)
# Check if FFMPEG and waifu2x are present
if not os.path.isdir(self.ffmpeg_path):
raise FileNotFoundError(self.ffmpeg_path)
if not os.path.isfile(self.waifu2x_path):
raise FileNotFoundError(self.waifu2x_path)
# Initialize objects for ffmpeg and waifu2x-caffe
fm = Ffmpeg(self.ffmpeg_path, self.video_output, self.ffmpeg_arguments)
w2 = Waifu2x(self.waifu2x_path, self.method, self.model_type)
# Extract frames from video
fm.extract_frames(self.input_video, self.extracted_frames)
Avalon.info('Reading video information')
info = self._get_video_info()
# Analyze original video with ffprobe and retrieve framerate
# width, height = info['streams'][0]['width'], info['streams'][0]['height']
# Find index of video stream
video_stream_index = None
for stream in info['streams']:
if stream['codec_type'] == 'video':
video_stream_index = stream['index']
break
# Exit if no video stream found
if video_stream_index is None:
Avalon.error('Aborting: No video stream found')
# Get average frame rate of video stream
framerate = float(Fraction(info['streams'][video_stream_index]['avg_frame_rate']))
Avalon.info('Framerate: {}'.format(framerate))
# Upscale images one by one using waifu2x
Avalon.info('Starting to upscale extracted images')
self._upscale_frames(w2)
Avalon.info('Upscaling completed')
# Frames to Video
Avalon.info('Converting extracted frames into video')
# Width/height will be coded width/height x upscale factor
if self.factor:
coded_width = info['streams'][video_stream_index]['coded_width']
coded_height = info['streams'][video_stream_index]['coded_height']
fm.convert_video(framerate, '{}x{}'.format(self.factor * coded_width, self.factor * coded_height), self.upscaled_frames)
# Use user defined output size
else:
fm.convert_video(framerate, '{}x{}'.format(self.width, self.height), self.upscaled_frames)
Avalon.info('Conversion completed')
# Extract and press audio in
Avalon.info('Stripping audio track from original video')
fm.extract_audio(self.input_video, self.upscaled_frames)
Avalon.info('Inserting audio track into new video')
fm.insert_audio_track(self.upscaled_frames)