mirror of
https://github.com/KwaiVGI/LivePortrait.git
synced 2024-12-22 12:22:38 +00:00
232 lines
12 KiB
Markdown
232 lines
12 KiB
Markdown
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
|
||
|
||
<div align='center'>
|
||
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup> 
|
||
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup> 
|
||
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup> 
|
||
<a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup> 
|
||
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup> 
|
||
</div>
|
||
|
||
<div align='center'>
|
||
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup> 
|
||
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup> 
|
||
</div>
|
||
|
||
<div align='center'>
|
||
<sup>1 </sup>Kuaishou Technology  <sup>2 </sup>University of Science and Technology of China  <sup>3 </sup>Fudan University 
|
||
</div>
|
||
<div align='center'>
|
||
<small><sup>†</sup> Corresponding author</small>
|
||
</div>
|
||
|
||
<br>
|
||
<div align="center">
|
||
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
|
||
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
|
||
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
|
||
<a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
|
||
<a href="https://github.com/KwaiVGI/LivePortrait"><img src="https://img.shields.io/github/stars/KwaiVGI/LivePortrait"></a>
|
||
</div>
|
||
<br>
|
||
|
||
<p align="center">
|
||
<img src="./assets/docs/showcase2.gif" alt="showcase">
|
||
<br>
|
||
🔥 For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
|
||
</p>
|
||
|
||
|
||
|
||
## 🔥 Updates
|
||
- **`2024/07/25`**: 📦 Windows users can now download the package from [HuggingFace](https://huggingface.co/cleardusk/LivePortrait-Windows/tree/main) or [BaiduYun](https://pan.baidu.com/s/1FWsWqKe0eNfXrwjEhhCqlw?pwd=86q2). Simply unzip and double-click `run_windows.bat` to enjoy!
|
||
- **`2024/07/24`**: 🎨 We support pose editing for source portraits in the Gradio interface. We’ve also lowered the default detection threshold to increase recall. [Have fun](assets/docs/changelog/2024-07-24.md)!
|
||
- **`2024/07/19`**: ✨ We support 🎞️ **portrait video editing (aka v2v)**! More to see [here](assets/docs/changelog/2024-07-19.md).
|
||
- **`2024/07/17`**: 🍎 We support macOS with Apple Silicon, modified from [jeethu](https://github.com/jeethu)'s PR [#143](https://github.com/KwaiVGI/LivePortrait/pull/143).
|
||
- **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).
|
||
- **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
|
||
- **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
|
||
- **`2024/07/04`**: 🔥 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
|
||
|
||
|
||
|
||
## Introduction 📖
|
||
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
|
||
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.
|
||
|
||
## Getting Started 🏁
|
||
### 1. Clone the code and prepare the environment
|
||
```bash
|
||
git clone https://github.com/KwaiVGI/LivePortrait
|
||
cd LivePortrait
|
||
|
||
# create env using conda
|
||
conda create -n LivePortrait python=3.9
|
||
conda activate LivePortrait
|
||
|
||
# install dependencies with pip
|
||
# for Linux and Windows users
|
||
pip install -r requirements.txt
|
||
# for macOS with Apple Silicon users
|
||
pip install -r requirements_macOS.txt
|
||
```
|
||
|
||
**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/download.html) installed, including both `ffmpeg` and `ffprobe`!
|
||
|
||
### 2. Download pretrained weights
|
||
|
||
The easiest way to download the pretrained weights is from HuggingFace:
|
||
```bash
|
||
# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
|
||
git lfs install
|
||
# clone and move the weights
|
||
git clone https://huggingface.co/KwaiVGI/LivePortrait temp_pretrained_weights
|
||
mv temp_pretrained_weights/* pretrained_weights/
|
||
rm -rf temp_pretrained_weights
|
||
```
|
||
|
||
Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
|
||
|
||
Ensuring the directory structure is as follows, or contains:
|
||
```text
|
||
pretrained_weights
|
||
├── insightface
|
||
│ └── models
|
||
│ └── buffalo_l
|
||
│ ├── 2d106det.onnx
|
||
│ └── det_10g.onnx
|
||
└── liveportrait
|
||
├── base_models
|
||
│ ├── appearance_feature_extractor.pth
|
||
│ ├── motion_extractor.pth
|
||
│ ├── spade_generator.pth
|
||
│ └── warping_module.pth
|
||
├── landmark.onnx
|
||
└── retargeting_models
|
||
└── stitching_retargeting_module.pth
|
||
```
|
||
|
||
### 3. Inference 🚀
|
||
|
||
#### Fast hands-on
|
||
```bash
|
||
# For Linux and Windows
|
||
python inference.py
|
||
|
||
# For macOS with Apple Silicon, Intel not supported, this maybe 20x slower than RTX 4090
|
||
PYTORCH_ENABLE_MPS_FALLBACK=1 python inference.py
|
||
```
|
||
|
||
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image or video, and generated result.
|
||
|
||
<p align="center">
|
||
<img src="./assets/docs/inference.gif" alt="image">
|
||
</p>
|
||
|
||
Or, you can change the input by specifying the `-s` and `-d` arguments:
|
||
|
||
```bash
|
||
# source input is an image
|
||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
|
||
|
||
# source input is a video ✨
|
||
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d0.mp4
|
||
|
||
# more options to see
|
||
python inference.py -h
|
||
```
|
||
|
||
#### Driving video auto-cropping 📢📢📢
|
||
To use your own driving video, we **recommend**: ⬇️
|
||
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
|
||
- Focus on the head area, similar to the example videos.
|
||
- Minimize shoulder movement.
|
||
- Make sure the first frame of driving video is a frontal face with **neutral expression**.
|
||
|
||
Below is a auto-cropping case by `--flag_crop_driving_video`:
|
||
```bash
|
||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
|
||
```
|
||
|
||
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_driving_video`, `--vy_ratio_crop_driving_video` options to adjust the scale and offset, or do it manually.
|
||
|
||
#### Motion template making
|
||
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
|
||
```bash
|
||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl # portrait animation
|
||
python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d5.pkl # portrait video editing
|
||
```
|
||
|
||
### 4. Gradio interface 🤗
|
||
|
||
We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:
|
||
|
||
```bash
|
||
# For Linux and Windows users (and macOS with Intel??)
|
||
python app.py
|
||
|
||
# For macOS with Apple Silicon users, Intel not supported, this maybe 20x slower than RTX 4090
|
||
PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py
|
||
```
|
||
|
||
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
|
||
|
||
🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
|
||
```bash
|
||
# enable torch.compile for faster inference
|
||
python app.py --flag_do_torch_compile
|
||
```
|
||
**Note**: This method is not supported on Windows and macOS.
|
||
|
||
**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗**
|
||
|
||
### 5. Inference speed evaluation 🚀🚀🚀
|
||
We have also provided a script to evaluate the inference speed of each module:
|
||
|
||
```bash
|
||
# For NVIDIA GPU
|
||
python speed.py
|
||
```
|
||
|
||
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
|
||
|
||
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|
||
|-----------------------------------|:-------------:|:--------------:|:-------------:|
|
||
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
|
||
| Motion Extractor | 28.12 | 108 | 0.84 |
|
||
| Spade Generator | 55.37 | 212 | 7.59 |
|
||
| Warping Module | 45.53 | 174 | 5.21 |
|
||
| Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
|
||
|
||
*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
|
||
|
||
## Community Resources 🤗
|
||
|
||
Discover the invaluable resources contributed by our community to enhance your LivePortrait experience:
|
||
|
||
- [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai)
|
||
- [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007)
|
||
- [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker)
|
||
- [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch)
|
||
- [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph)
|
||
- [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr)
|
||
|
||
And many more amazing contributions from our community!
|
||
|
||
## Acknowledgements 💐
|
||
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
|
||
|
||
## Citation 💖
|
||
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
|
||
```bibtex
|
||
@article{guo2024liveportrait,
|
||
title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control},
|
||
author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di},
|
||
journal = {arXiv preprint arXiv:2407.03168},
|
||
year = {2024}
|
||
}
|
||
```
|
||
|
||
## Contact 📧
|
||
[**Jianzhu Guo (郭建珠)**](https://guojianzhu.com); **guojianzhu1994@gmail.com**
|