mirror of
https://github.com/KwaiVGI/LivePortrait.git
synced 2024-12-23 05:02:38 +00:00
115 lines
4.5 KiB
Markdown
115 lines
4.5 KiB
Markdown
<h1 align="center"> Webcam Live Portrait</h1>
|
|
|
|
<p align="center">
|
|
<img src="./assets/docs/showcase2.gif" alt="showcase">
|
|
<br>
|
|
🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥🔥
|
|
</p>`
|
|
|
|
https://github.com/Mrkomiljon/Webcam_Live_Portrait/assets/92161283/4e16fbc7-8c13-4415-b946-dd731ac00b6e
|
|
|
|
|
|
|
|
## 🔥 Updates
|
|
- **`2024/07/10`**: 🔥 I released the initial version of the inference code for webcam. Continuous updates, stay tuned!
|
|
|
|
|
|
## Introduction
|
|
This repo, named **Webcam Live Portrait**, contains the official PyTorch implementation of author paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
|
|
I am actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.
|
|
|
|
## 🔥 Getting Started
|
|
### 1. Clone the code and prepare the environment
|
|
```bash
|
|
git clone https://github.com/Mrkomiljon/Webcam_Live_Portrait.git
|
|
cd Webcam_Live_Portrait
|
|
|
|
# create env using conda
|
|
conda create -n LivePortrait python==3.9.18
|
|
conda activate LivePortrait
|
|
# install dependencies with pip
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### 2. Download pretrained weights
|
|
Download pretrained LivePortrait weights and face detection models of InsightFace from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). We have packed all weights in one directory 😊. Unzip and place them in `./pretrained_weights` ensuring the directory structure is as follows:
|
|
```text
|
|
pretrained_weights
|
|
├── insightface
|
|
│ └── models
|
|
│ └── buffalo_l
|
|
│ ├── 2d106det.onnx
|
|
│ └── det_10g.onnx
|
|
└── liveportrait
|
|
├── base_models
|
|
│ ├── appearance_feature_extractor.pth
|
|
│ ├── motion_extractor.pth
|
|
│ ├── spade_generator.pth
|
|
│ └── warping_module.pth
|
|
├── landmark.onnx
|
|
└── retargeting_models
|
|
└── stitching_retargeting_module.pth
|
|
```
|
|
|
|
### 3. Inference 🚀
|
|
|
|
```bash
|
|
python inference.py
|
|
```
|
|
|
|
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
|
|
|
|
<p align="center">
|
|
<img src="https://github.com/Mrkomiljon/Webcam_Live_Portrait/assets/92161283/7c4daf41-838d-4eb8-a762-9188cd337ee6">
|
|
</p>
|
|
|
|
|
|
https://github.com/Mrkomiljon/Webcam_Live_Portrait/assets/92161283/7c4daf41-838d-4eb8-a762-9188cd337ee6
|
|
|
|
|
|
|
|
Or, you can change the input by specifying the `-s` and `-d` arguments come from webcam:
|
|
|
|
```bash
|
|
python inference.py -s assets/examples/source/MY_photo.jpg
|
|
|
|
# or disable pasting back
|
|
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
|
|
|
|
# more options to see
|
|
python inference.py -h
|
|
```
|
|
|
|
|
|
### 4. Gradio interface
|
|
|
|
We also provide a Gradio interface for a better experience, just run by:
|
|
|
|
```bash
|
|
python app.py
|
|
```
|
|
|
|
### 5. Inference speed evaluation 🚀🚀🚀
|
|
We have also provided a script to evaluate the inference speed of each module:
|
|
|
|
```bash
|
|
python speed.py
|
|
```
|
|
|
|
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
|
|
|
|
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|
|
|-----------------------------------|:-------------:|:--------------:|:-------------:|
|
|
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
|
|
| Motion Extractor | 28.12 | 108 | 0.84 |
|
|
| Spade Generator | 55.37 | 212 | 7.59 |
|
|
| Warping Module | 45.53 | 174 | 5.21 |
|
|
| Stitching and Retargeting Modules| 0.23 | 2.3 | 0.31 |
|
|
|
|
*Note: the listed values of Stitching and Retargeting Modules represent the combined parameter counts and the total sequential inference time of three MLP networks.*
|
|
|
|
|
|
## Acknowledgements
|
|
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
|
|
|