update Readme.md

This commit is contained in:
Rafael Silva 2024-10-07 06:53:29 -04:00
parent e2ec7f5b91
commit 2bfc0d13ec

190
readme.md
View File

@ -1,182 +1,94 @@
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
# LivePortrait for Nuke
<div align='center'>
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup>&emsp;
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup>&emsp;
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup>&emsp;
<a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup>&emsp;
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup>&emsp;
</div>
## Introduction 📖
<div align='center'>
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup>&emsp;
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup>&emsp;
</div>
<div align='center'>
<sup>1 </sup>Kuaishou Technology&emsp; <sup>2 </sup>University of Science and Technology of China&emsp; <sup>3 </sup>Fudan University&emsp;
</div>
This project integrates [**LivePortrait**: Efficient Portrait Animation with Stitching and Retargeting Control](https://liveportrait.github.io/) to **The Foundry's Nuke**, enabling artists to easily create animated portraits through advanced facial expression and motion transfer.
**LivePortrait** leverages a series of neural networks to extract information, deform, and blend reference videos with target images, producing highly realistic and expressive animations.
By integrating **LivePortrait** into Nuke, artists can enhance their workflows within a familiar environment, gaining additional control through Nuke's curve editor and custom knob creation.
This implementation provides a self-contained package as a series of **Inference** nodes. This allows for easy installation on any Nuke 14+ system, **without requiring additional dependencies** like ComfyUI or conda environments.
The current version supports video-to-image animation transfer. Future developments will expand this functionality to include video-to-video animation transfer, eyes and lips retargeting, an animal animation model, and support for additional face detection models.
<br>
<div align="center">
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
<a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
[![author](https://img.shields.io/badge/by:_Rafael_Silva-red?logo=linkedin&logoColor=white)](https://www.linkedin.com/in/rafael-silva-ba166513/)
[![license](https://img.shields.io/badge/license-MIT-blue)](LICENSE)
</div>
<br>
<p align="center">
<img src="./assets/docs/showcase2.gif" alt="showcase">
<br>
🔥 For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
🔥 For more results, visit the project <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
</p>
## Compatibility
## 🔥 Updates
- **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).
- **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
- **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
- **`2024/07/04`**: 🔥 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
**Nuke 15.1+**, tested on **Linux**.
## Features
## Introduction
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.
- **Fast** inference and animation transfer
- **Flexible** advanced options for animation control
- **Seamless integration** into Nuke's node graph and curve editor
- **Separated** network nodes for **customization** and workflow experimentation
- **Easy installation** using Nuke's Cattery system
## 🔥 Getting Started
### 1. Clone the code and prepare the environment
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
# create env using conda
conda create -n LivePortrait python==3.9.18
conda activate LivePortrait
# install dependencies with pip
pip install -r requirements.txt
```
## Limitations
**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/) installed!
> Maximum resolution for image output is currently 256x256 pixels (upscaled to 512x512 pixels), due to the original model's limitations.
### 2. Download pretrained weights
The easiest way to download the pretrained weights is from HuggingFace:
```bash
# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
git lfs install
# clone the weights
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
```
## Installation
Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
1. Download and unzip the latest release from [here](https://github.com/rafaelperez/LivePortrait-for-Nuke/releases).
2. Copy the extracted `Cattery` folder to `.nuke` or your plugins path.
3. In the toolbar, choose **Cattery > Update** or simply **restart** Nuke.
Ensuring the directory structure is as follows, or contains:
```text
pretrained_weights
├── insightface
│ └── models
│ └── buffalo_l
│ ├── 2d106det.onnx
│ └── det_10g.onnx
└── liveportrait
├── base_models
│ ├── appearance_feature_extractor.pth
│ ├── motion_extractor.pth
│ ├── spade_generator.pth
│ └── warping_module.pth
├── landmark.onnx
└── retargeting_models
└── stitching_retargeting_module.pth
```
**LivePortrait** will then be accessible under the toolbar at **Cattery > Stylization > LivePortrait**.
### 3. Inference 🚀
#### Fast hands-on
```bash
python inference.py
```
## Quick Start
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
LivePortrait requires two inputs:
<p align="center">
<img src="./assets/docs/inference.gif" alt="image">
</p>
- **Image** (target face)
- **Video reference** (animation to be transferred)
Or, you can change the input by specifying the `-s` and `-d` arguments:
Open the included `demo.nk` file for a working example.
A self-contained gizmo will be provided in the next release.
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
# disable pasting back to run faster
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
## Release Notes
# more options to see
python inference.py -h
```
**Latest version:** 1.0
#### Driving video auto-cropping
- [x] Initial release
- [x] Video to image animation transfer
- [x] Integrated into Nuke's node graph
- [x] Advanced options for animation control
- [x] Easy installation with Cattery package
📕 To use your own driving video, we **recommend**:
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
- Focus on the head area, similar to the example videos.
- Minimize shoulder movement.
- Make sure the first frame of driving video is a frontal face with **neutral expression**.
Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
```
## License and Acknowledgments
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.
**LivePortrait.cat** is licensed under the MIT License, and is derived from https://github.com/KwaiVGI/LivePortrait.
#### Motion template making
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
```bash
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
```
While the MIT License permits commercial use of **LivePortrait**, the dataset used for its training and some of the underlying models may be under a non-commercial license.
**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊
This license **does not cover** the underlying pre-trained model, associated training data, and dependencies, which may be subject to further usage restrictions.
### 4. Gradio interface 🤗
Consult https://github.com/KwaiVGI/LivePortrait for more information on associated licensing terms.
We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:
**Users are solely responsible for ensuring that the underlying model, training data, and dependencies align with their intended usage of LivePortrait.cat.**
```bash
python app.py
```
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
```bash
# enable torch.compile for faster inference
python app.py --flag_do_torch_compile
```
**Note**: This method has not been fully tested. e.g., on Windows.
**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗**
### 5. Inference speed evaluation 🚀🚀🚀
We have also provided a script to evaluate the inference speed of each module:
```bash
python speed.py
```
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|-----------------------------------|:-------------:|:--------------:|:-------------:|
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
| Motion Extractor | 28.12 | 108 | 0.84 |
| Spade Generator | 55.37 | 212 | 7.59 |
| Warping Module | 45.53 | 174 | 5.21 |
| Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
## Community Resources 🤗
@ -194,7 +106,7 @@ And many more amazing contributions from our community!
## Acknowledgements
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
## Citation 💖
## Citation
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
```bibtex
@article{guo2024liveportrait,