mirror of
https://github.com/KwaiVGI/LivePortrait.git
synced 2025-03-15 05:52:58 +00:00
update Readme.md
This commit is contained in:
parent
e2ec7f5b91
commit
2bfc0d13ec
190
readme.md
190
readme.md
@ -1,182 +1,94 @@
|
||||
<h1 align="center">LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control</h1>
|
||||
# LivePortrait for Nuke
|
||||
|
||||
<div align='center'>
|
||||
<a href='https://github.com/cleardusk' target='_blank'><strong>Jianzhu Guo</strong></a><sup> 1†</sup> 
|
||||
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Dingyun Zhang</strong></a><sup> 1,2</sup> 
|
||||
<a href='https://github.com/KwaiVGI' target='_blank'><strong>Xiaoqiang Liu</strong></a><sup> 1</sup> 
|
||||
<a href='https://scholar.google.com/citations?user=t88nyvsAAAAJ&hl' target='_blank'><strong>Zhizhou Zhong</strong></a><sup> 1,3</sup> 
|
||||
<a href='https://scholar.google.com.hk/citations?user=_8k1ubAAAAAJ' target='_blank'><strong>Yuan Zhang</strong></a><sup> 1</sup> 
|
||||
</div>
|
||||
## Introduction 📖
|
||||
|
||||
<div align='center'>
|
||||
<a href='https://scholar.google.com/citations?user=P6MraaYAAAAJ' target='_blank'><strong>Pengfei Wan</strong></a><sup> 1</sup> 
|
||||
<a href='https://openreview.net/profile?id=~Di_ZHANG3' target='_blank'><strong>Di Zhang</strong></a><sup> 1</sup> 
|
||||
</div>
|
||||
|
||||
<div align='center'>
|
||||
<sup>1 </sup>Kuaishou Technology  <sup>2 </sup>University of Science and Technology of China  <sup>3 </sup>Fudan University 
|
||||
</div>
|
||||
This project integrates [**LivePortrait**: Efficient Portrait Animation with Stitching and Retargeting Control](https://liveportrait.github.io/) to **The Foundry's Nuke**, enabling artists to easily create animated portraits through advanced facial expression and motion transfer.
|
||||
|
||||
**LivePortrait** leverages a series of neural networks to extract information, deform, and blend reference videos with target images, producing highly realistic and expressive animations.
|
||||
|
||||
By integrating **LivePortrait** into Nuke, artists can enhance their workflows within a familiar environment, gaining additional control through Nuke's curve editor and custom knob creation.
|
||||
|
||||
This implementation provides a self-contained package as a series of **Inference** nodes. This allows for easy installation on any Nuke 14+ system, **without requiring additional dependencies** like ComfyUI or conda environments.
|
||||
|
||||
The current version supports video-to-image animation transfer. Future developments will expand this functionality to include video-to-video animation transfer, eyes and lips retargeting, an animal animation model, and support for additional face detection models.
|
||||
|
||||
<br>
|
||||
<div align="center">
|
||||
<!-- <a href='LICENSE'><img src='https://img.shields.io/badge/license-MIT-yellow'></a> -->
|
||||
<a href='https://arxiv.org/pdf/2407.03168'><img src='https://img.shields.io/badge/arXiv-LivePortrait-red'></a>
|
||||
<a href='https://liveportrait.github.io'><img src='https://img.shields.io/badge/Project-LivePortrait-green'></a>
|
||||
<a href='https://huggingface.co/spaces/KwaiVGI/liveportrait'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue'></a>
|
||||
|
||||
[](https://www.linkedin.com/in/rafael-silva-ba166513/)
|
||||
[](LICENSE)
|
||||
|
||||
</div>
|
||||
<br>
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/docs/showcase2.gif" alt="showcase">
|
||||
<br>
|
||||
🔥 For more results, visit our <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
|
||||
🔥 For more results, visit the project <a href="https://liveportrait.github.io/"><strong>homepage</strong></a> 🔥
|
||||
</p>
|
||||
|
||||
|
||||
## Compatibility
|
||||
|
||||
## 🔥 Updates
|
||||
- **`2024/07/10`**: 💪 We support audio and video concatenating, driving video auto-cropping, and template making to protect privacy. More to see [here](assets/docs/changelog/2024-07-10.md).
|
||||
- **`2024/07/09`**: 🤗 We released the [HuggingFace Space](https://huggingface.co/spaces/KwaiVGI/liveportrait), thanks to the HF team and [Gradio](https://github.com/gradio-app/gradio)!
|
||||
- **`2024/07/04`**: 😊 We released the initial version of the inference code and models. Continuous updates, stay tuned!
|
||||
- **`2024/07/04`**: 🔥 We released the [homepage](https://liveportrait.github.io) and technical report on [arXiv](https://arxiv.org/pdf/2407.03168).
|
||||
**Nuke 15.1+**, tested on **Linux**.
|
||||
|
||||
|
||||
## Features
|
||||
|
||||
## Introduction
|
||||
This repo, named **LivePortrait**, contains the official PyTorch implementation of our paper [LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control](https://arxiv.org/pdf/2407.03168).
|
||||
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) 💖.
|
||||
- **Fast** inference and animation transfer
|
||||
- **Flexible** advanced options for animation control
|
||||
- **Seamless integration** into Nuke's node graph and curve editor
|
||||
- **Separated** network nodes for **customization** and workflow experimentation
|
||||
- **Easy installation** using Nuke's Cattery system
|
||||
|
||||
## 🔥 Getting Started
|
||||
### 1. Clone the code and prepare the environment
|
||||
```bash
|
||||
git clone https://github.com/KwaiVGI/LivePortrait
|
||||
cd LivePortrait
|
||||
|
||||
# create env using conda
|
||||
conda create -n LivePortrait python==3.9.18
|
||||
conda activate LivePortrait
|
||||
# install dependencies with pip
|
||||
pip install -r requirements.txt
|
||||
```
|
||||
## Limitations
|
||||
|
||||
**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/) installed!
|
||||
> Maximum resolution for image output is currently 256x256 pixels (upscaled to 512x512 pixels), due to the original model's limitations.
|
||||
|
||||
### 2. Download pretrained weights
|
||||
|
||||
The easiest way to download the pretrained weights is from HuggingFace:
|
||||
```bash
|
||||
# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
|
||||
git lfs install
|
||||
# clone the weights
|
||||
git clone https://huggingface.co/KwaiVGI/liveportrait pretrained_weights
|
||||
```
|
||||
## Installation
|
||||
|
||||
Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
|
||||
1. Download and unzip the latest release from [here](https://github.com/rafaelperez/LivePortrait-for-Nuke/releases).
|
||||
2. Copy the extracted `Cattery` folder to `.nuke` or your plugins path.
|
||||
3. In the toolbar, choose **Cattery > Update** or simply **restart** Nuke.
|
||||
|
||||
Ensuring the directory structure is as follows, or contains:
|
||||
```text
|
||||
pretrained_weights
|
||||
├── insightface
|
||||
│ └── models
|
||||
│ └── buffalo_l
|
||||
│ ├── 2d106det.onnx
|
||||
│ └── det_10g.onnx
|
||||
└── liveportrait
|
||||
├── base_models
|
||||
│ ├── appearance_feature_extractor.pth
|
||||
│ ├── motion_extractor.pth
|
||||
│ ├── spade_generator.pth
|
||||
│ └── warping_module.pth
|
||||
├── landmark.onnx
|
||||
└── retargeting_models
|
||||
└── stitching_retargeting_module.pth
|
||||
```
|
||||
**LivePortrait** will then be accessible under the toolbar at **Cattery > Stylization > LivePortrait**.
|
||||
|
||||
### 3. Inference 🚀
|
||||
|
||||
#### Fast hands-on
|
||||
```bash
|
||||
python inference.py
|
||||
```
|
||||
## Quick Start
|
||||
|
||||
If the script runs successfully, you will get an output mp4 file named `animations/s6--d0_concat.mp4`. This file includes the following results: driving video, input image, and generated result.
|
||||
LivePortrait requires two inputs:
|
||||
|
||||
<p align="center">
|
||||
<img src="./assets/docs/inference.gif" alt="image">
|
||||
</p>
|
||||
- **Image** (target face)
|
||||
- **Video reference** (animation to be transferred)
|
||||
|
||||
Or, you can change the input by specifying the `-s` and `-d` arguments:
|
||||
Open the included `demo.nk` file for a working example.
|
||||
A self-contained gizmo will be provided in the next release.
|
||||
|
||||
```bash
|
||||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4
|
||||
|
||||
# disable pasting back to run faster
|
||||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 --no_flag_pasteback
|
||||
## Release Notes
|
||||
|
||||
# more options to see
|
||||
python inference.py -h
|
||||
```
|
||||
**Latest version:** 1.0
|
||||
|
||||
#### Driving video auto-cropping
|
||||
- [x] Initial release
|
||||
- [x] Video to image animation transfer
|
||||
- [x] Integrated into Nuke's node graph
|
||||
- [x] Advanced options for animation control
|
||||
- [x] Easy installation with Cattery package
|
||||
|
||||
📕 To use your own driving video, we **recommend**:
|
||||
- Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
|
||||
- Focus on the head area, similar to the example videos.
|
||||
- Minimize shoulder movement.
|
||||
- Make sure the first frame of driving video is a frontal face with **neutral expression**.
|
||||
|
||||
Below is a auto-cropping case by `--flag_crop_driving_video`:
|
||||
```bash
|
||||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video
|
||||
```
|
||||
## License and Acknowledgments
|
||||
|
||||
If you find the results of auto-cropping is not well, you can modify the `--scale_crop_video`, `--vy_ratio_crop_video` options to adjust the scale and offset, or do it manually.
|
||||
**LivePortrait.cat** is licensed under the MIT License, and is derived from https://github.com/KwaiVGI/LivePortrait.
|
||||
|
||||
#### Motion template making
|
||||
You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as:
|
||||
```bash
|
||||
python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl
|
||||
```
|
||||
While the MIT License permits commercial use of **LivePortrait**, the dataset used for its training and some of the underlying models may be under a non-commercial license.
|
||||
|
||||
**Discover more interesting results on our [Homepage](https://liveportrait.github.io)** 😊
|
||||
This license **does not cover** the underlying pre-trained model, associated training data, and dependencies, which may be subject to further usage restrictions.
|
||||
|
||||
### 4. Gradio interface 🤗
|
||||
Consult https://github.com/KwaiVGI/LivePortrait for more information on associated licensing terms.
|
||||
|
||||
We also provide a Gradio <a href='https://github.com/gradio-app/gradio'><img src='https://img.shields.io/github/stars/gradio-app/gradio'></a> interface for a better experience, just run by:
|
||||
**Users are solely responsible for ensuring that the underlying model, training data, and dependencies align with their intended usage of LivePortrait.cat.**
|
||||
|
||||
```bash
|
||||
python app.py
|
||||
```
|
||||
|
||||
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
|
||||
|
||||
🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
|
||||
```bash
|
||||
# enable torch.compile for faster inference
|
||||
python app.py --flag_do_torch_compile
|
||||
```
|
||||
**Note**: This method has not been fully tested. e.g., on Windows.
|
||||
|
||||
**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗**
|
||||
|
||||
### 5. Inference speed evaluation 🚀🚀🚀
|
||||
We have also provided a script to evaluate the inference speed of each module:
|
||||
|
||||
```bash
|
||||
python speed.py
|
||||
```
|
||||
|
||||
Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
|
||||
|
||||
| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
|
||||
|-----------------------------------|:-------------:|:--------------:|:-------------:|
|
||||
| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
|
||||
| Motion Extractor | 28.12 | 108 | 0.84 |
|
||||
| Spade Generator | 55.37 | 212 | 7.59 |
|
||||
| Warping Module | 45.53 | 174 | 5.21 |
|
||||
| Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
|
||||
|
||||
*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
|
||||
|
||||
## Community Resources 🤗
|
||||
|
||||
@ -194,7 +106,7 @@ And many more amazing contributions from our community!
|
||||
## Acknowledgements
|
||||
We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions.
|
||||
|
||||
## Citation 💖
|
||||
## Citation
|
||||
If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX:
|
||||
```bibtex
|
||||
@article{guo2024liveportrait,
|
||||
|
Loading…
Reference in New Issue
Block a user