LivePortrait/src/live_portrait_pipeline.py

401 lines
22 KiB
Python
Raw Normal View History

2024-07-03 20:32:47 +00:00
# coding: utf-8
"""
Pipeline of LivePortrait
"""
import torch
torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
2024-07-03 20:32:47 +00:00
import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
2024-07-03 20:32:47 +00:00
import numpy as np
import os
2024-07-03 20:32:47 +00:00
import os.path as osp
from rich.progress import track
from .config.argument_config import ArgumentConfig
from .config.inference_config import InferenceConfig
from .config.crop_config import CropConfig
from .utils.cropper import Cropper
from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
2024-07-05 03:36:03 +00:00
from .utils.crop import _transform_img, prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_video, resize_to_limit, dump, load
from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix, is_image
from .utils.filter import smooth
2024-07-03 20:32:47 +00:00
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
2024-07-03 20:32:47 +00:00
from .live_portrait_wrapper import LivePortraitWrapper
def make_abs_path(fn):
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
class LivePortraitPipeline(object):
def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
self.live_portrait_wrapper: LivePortraitWrapper = LivePortraitWrapper(inference_cfg=inference_cfg)
self.cropper: Cropper = Cropper(crop_cfg=crop_cfg)
2024-07-03 20:32:47 +00:00
def make_motion_template(self, I_lst, c_eyes_lst, c_lip_lst, **kwargs):
n_frames = I_lst.shape[0]
template_dct = {
'n_frames': n_frames,
'output_fps': kwargs.get('output_fps', 25),
'motion': [],
'c_eyes_lst': [],
'c_lip_lst': [],
'x_i_info_lst': [],
}
for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
# collect s, R, δ and t for inference
I_i = I_lst[i]
x_i_info = self.live_portrait_wrapper.get_kp_info(I_i)
R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll'])
item_dct = {
'scale': x_i_info['scale'].cpu().numpy().astype(np.float32),
'R': R_i.cpu().numpy().astype(np.float32),
'exp': x_i_info['exp'].cpu().numpy().astype(np.float32),
't': x_i_info['t'].cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
c_eyes = c_eyes_lst[i].astype(np.float32)
template_dct['c_eyes_lst'].append(c_eyes)
c_lip = c_lip_lst[i].astype(np.float32)
template_dct['c_lip_lst'].append(c_lip)
template_dct['x_i_info_lst'].append(x_i_info)
return template_dct
2024-07-03 20:32:47 +00:00
def execute(self, args: ArgumentConfig):
# for convenience
inf_cfg = self.live_portrait_wrapper.inference_cfg
device = self.live_portrait_wrapper.device
crop_cfg = self.cropper.crop_cfg
######## load source input ########
flag_is_source_video = False
source_fps = None
if is_image(args.source):
flag_is_source_video = False
img_rgb = load_image_rgb(args.source)
img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
log(f"Load source image from {args.source}")
source_rgb_lst = [img_rgb]
elif is_video(args.source):
flag_is_source_video = True
source_rgb_lst = load_video(args.source)
source_rgb_lst = [resize_to_limit(img, inf_cfg.source_max_dim, inf_cfg.source_division) for img in source_rgb_lst]
source_fps = int(get_fps(args.source))
log(f"Load source video from {args.source}, FPS is {source_fps}")
else: # source input is an unknown format
raise Exception(f"Unknown source format: {args.source}")
2024-07-03 20:32:47 +00:00
######## process driving info ########
flag_load_from_template = is_template(args.driving)
driving_rgb_crop_256x256_lst = None
wfp_template = None
if flag_load_from_template:
# NOTE: load from template, it is fast, but the cropping video is None
log(f"Load from template: {args.driving}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
driving_template_dct = load(args.driving)
c_d_eyes_lst = driving_template_dct['c_eyes_lst'] if 'c_eyes_lst' in driving_template_dct.keys() else driving_template_dct['c_d_eyes_lst'] # compatible with previous keys
c_d_lip_lst = driving_template_dct['c_lip_lst'] if 'c_lip_lst' in driving_template_dct.keys() else driving_template_dct['c_d_lip_lst']
driving_n_frames = driving_template_dct['n_frames']
if flag_is_source_video:
n_frames = min(len(source_rgb_lst), driving_n_frames) # minimum number as the number of the animated frames
else:
n_frames = driving_n_frames
# set output_fps
output_fps = driving_template_dct.get('output_fps', inf_cfg.output_fps)
log(f'The FPS of template: {output_fps}')
if args.flag_crop_driving_video:
log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
elif osp.exists(args.driving) and is_video(args.driving):
# load from video file, AND make motion template
output_fps = int(get_fps(args.driving))
log(f"Load driving video from: {args.driving}, FPS is {output_fps}")
driving_rgb_lst = load_video(args.driving)
driving_n_frames = len(driving_rgb_lst)
######## make motion template ########
log("Start making driving motion template...")
if flag_is_source_video:
n_frames = min(len(source_rgb_lst), driving_n_frames) # minimum number as the number of the animated frames
driving_rgb_lst = driving_rgb_lst[:n_frames]
else:
n_frames = driving_n_frames
if inf_cfg.flag_crop_driving_video:
ret_d = self.cropper.crop_driving_video(driving_rgb_lst)
log(f'Driving video is cropped, {len(ret_d["frame_crop_lst"])} frames are processed.')
if len(ret_d["frame_crop_lst"]) is not n_frames:
n_frames = min(n_frames, len(ret_d["frame_crop_lst"]))
driving_rgb_crop_lst, driving_lmk_crop_lst = ret_d['frame_crop_lst'], ret_d['lmk_crop_lst']
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
else:
driving_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(driving_rgb_lst)
driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
#######################################
c_d_eyes_lst, c_d_lip_lst = self.live_portrait_wrapper.calc_ratio(driving_lmk_crop_lst)
# save the motion template
I_d_lst = self.live_portrait_wrapper.prepare_videos(driving_rgb_crop_256x256_lst)
driving_template_dct = self.make_motion_template(I_d_lst, c_d_eyes_lst, c_d_lip_lst, output_fps=output_fps)
wfp_template = remove_suffix(args.driving) + '.pkl'
dump(wfp_template, driving_template_dct)
log(f"Dump motion template to {wfp_template}")
2024-07-03 20:32:47 +00:00
else:
raise Exception(f"{args.driving} not exists or unsupported driving info types!")
2024-07-03 20:32:47 +00:00
######## prepare for pasteback ########
I_p_pstbk_lst = None
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
I_p_pstbk_lst = []
log("Prepared pasteback mask done.")
2024-07-03 20:32:47 +00:00
I_p_lst = []
R_d_0, x_d_0_info = None, None
flag_normalize_lip = inf_cfg.flag_normalize_lip # not overwrite
flag_source_video_eye_retargeting = inf_cfg.flag_source_video_eye_retargeting # not overwrite
lip_delta_before_animation, eye_delta_before_animation = None, None
######## process source info ########
if flag_is_source_video:
log(f"Start making source motion template...")
source_rgb_lst = source_rgb_lst[:n_frames]
if inf_cfg.flag_do_crop:
ret_s = self.cropper.crop_source_video(source_rgb_lst, crop_cfg)
log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
if len(ret_s["frame_crop_lst"]) is not n_frames:
n_frames = min(n_frames, len(ret_s["frame_crop_lst"]))
img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
else:
source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
# save the motion template
I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
x_d_exp_lst = [source_template_dct['motion'][i]['exp'] + driving_template_dct['motion'][i]['exp'] - driving_template_dct['motion'][0]['exp'] for i in range(n_frames)]
x_d_exp_lst_smooth = smooth(x_d_exp_lst, source_template_dct['motion'][0]['exp'].shape, device, inf_cfg.driving_smooth_observation_variance)
if inf_cfg.flag_video_editing_head_rotation:
key_r = 'R' if 'R' in driving_template_dct['motion'][0].keys() else 'R_d' # compatible with previous keys
x_d_r_lst = [(np.dot(driving_template_dct['motion'][i][key_r], driving_template_dct['motion'][0][key_r].transpose(0, 2, 1))) @ source_template_dct['motion'][i]['R'] for i in range(n_frames)]
x_d_r_lst_smooth = smooth(x_d_r_lst, source_template_dct['motion'][0]['R'].shape, device, inf_cfg.driving_smooth_observation_variance)
else: # if the input is a source image, process it only once
crop_info = self.cropper.crop_source_image(source_rgb_lst[0], crop_cfg)
if crop_info is None:
raise Exception("No face detected in the source image!")
source_lmk = crop_info['lmk_crop']
img_crop_256x256 = crop_info['img_crop_256x256']
if inf_cfg.flag_do_crop:
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
else:
img_crop_256x256 = cv2.resize(source_rgb_lst[0], (256, 256)) # force to resize to 256x256
I_s = self.live_portrait_wrapper.prepare_source(img_crop_256x256)
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_c_s = x_s_info['kp']
R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
# let lip-open scalar to be 0 at first
if flag_normalize_lip:
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] >= inf_cfg.lip_normalize_threshold:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0]))
######## animate ########
log(f"The animated video consists of {n_frames} frames.")
for i in track(range(n_frames), description='🚀Animating...', total=n_frames):
if flag_is_source_video: # source video
x_s_info_tiny = source_template_dct['motion'][i]
x_s_info_tiny = dct2device(x_s_info_tiny, device)
source_lmk = source_lmk_crop_lst[i]
img_crop_256x256 = img_crop_256x256_lst[i]
I_s = I_s_lst[i]
x_s_info = source_template_dct['x_i_info_lst'][i]
x_c_s = x_s_info['kp']
R_s = x_s_info_tiny['R']
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
# let lip-open scalar to be 0 at first if the input is a video
if flag_normalize_lip:
c_d_lip_before_animation = [0.]
combined_lip_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_before_animation, source_lmk)
if combined_lip_ratio_tensor_before_animation[0][0] >= inf_cfg.lip_normalize_threshold:
lip_delta_before_animation = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor_before_animation)
# let eye-open scalar to be the same as the first frame if the latter is eye-open state
if flag_source_video_eye_retargeting:
if i == 0:
combined_eye_ratio_tensor_frame_zero = c_s_eyes_lst[0]
c_d_eye_before_animation_frame_zero = [[combined_eye_ratio_tensor_frame_zero[0][:2].mean()]]
if c_d_eye_before_animation_frame_zero[0][0] < inf_cfg.source_video_eye_retargeting_threshold:
c_d_eye_before_animation_frame_zero = [[0.39]]
combined_eye_ratio_tensor_before_animation = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eye_before_animation_frame_zero, source_lmk)
eye_delta_before_animation = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor_before_animation)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching: # prepare for paste back
mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, source_M_c2o_lst[i], dsize=(source_rgb_lst[i].shape[1], source_rgb_lst[i].shape[0]))
x_d_i_info = driving_template_dct['motion'][i]
x_d_i_info = dct2device(x_d_i_info, device)
R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d'] # compatible with previous keys
2024-07-03 20:32:47 +00:00
if i == 0: # cache the first frame
2024-07-03 20:32:47 +00:00
R_d_0 = R_d_i
x_d_0_info = x_d_i_info
if inf_cfg.flag_relative_motion:
if flag_is_source_video:
if inf_cfg.flag_video_editing_head_rotation:
R_new = x_d_r_lst_smooth[i]
else:
R_new = R_s
else:
R_new = (R_d_i @ R_d_0.permute(0, 2, 1)) @ R_s
delta_new = x_d_exp_lst_smooth[i] if flag_is_source_video else x_s_info['exp'] + (x_d_i_info['exp'] - x_d_0_info['exp'])
scale_new = x_s_info['scale'] if flag_is_source_video else x_s_info['scale'] * (x_d_i_info['scale'] / x_d_0_info['scale'])
t_new = x_s_info['t'] if flag_is_source_video else x_s_info['t'] + (x_d_i_info['t'] - x_d_0_info['t'])
2024-07-03 20:32:47 +00:00
else:
R_new = R_d_i
delta_new = x_d_i_info['exp']
scale_new = x_s_info['scale']
t_new = x_d_i_info['t']
t_new[..., 2].fill_(0) # zero tz
2024-07-03 20:32:47 +00:00
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
2024-07-03 20:32:47 +00:00
# without stitching or retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new += lip_delta_before_animation
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
2024-07-03 20:32:47 +00:00
else:
pass
elif inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
2024-07-03 20:32:47 +00:00
# with stitching and without retargeting
if flag_normalize_lip and lip_delta_before_animation is not None:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new) + lip_delta_before_animation
2024-07-03 20:32:47 +00:00
else:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
if flag_source_video_eye_retargeting and eye_delta_before_animation is not None:
x_d_i_new += eye_delta_before_animation
2024-07-03 20:32:47 +00:00
else:
eyes_delta, lip_delta = None, None
if inf_cfg.flag_eye_retargeting:
c_d_eyes_i = c_d_eyes_lst[i]
2024-07-03 20:32:47 +00:00
combined_eye_ratio_tensor = self.live_portrait_wrapper.calc_combined_eye_ratio(c_d_eyes_i, source_lmk)
# ∆_eyes,i = R_eyes(x_s; c_s,eyes, c_d,eyes,i)
eyes_delta = self.live_portrait_wrapper.retarget_eye(x_s, combined_eye_ratio_tensor)
if inf_cfg.flag_lip_retargeting:
c_d_lip_i = c_d_lip_lst[i]
2024-07-03 20:32:47 +00:00
combined_lip_ratio_tensor = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_i, source_lmk)
# ∆_lip,i = R_lip(x_s; c_s,lip, c_d,lip,i)
lip_delta = self.live_portrait_wrapper.retarget_lip(x_s, combined_lip_ratio_tensor)
if inf_cfg.flag_relative_motion: # use x_s
2024-07-03 20:32:47 +00:00
x_d_i_new = x_s + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
2024-07-03 20:32:47 +00:00
else: # use x_d,i
x_d_i_new = x_d_i_new + \
(eyes_delta if eyes_delta is not None else 0) + \
(lip_delta if lip_delta is not None else 0)
2024-07-03 20:32:47 +00:00
if inf_cfg.flag_stitching:
2024-07-03 20:32:47 +00:00
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
# TODO: the paste back procedure is slow, considering optimize it using multi-threading or GPU
if flag_is_source_video:
I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_float)
else:
I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], source_rgb_lst[0], mask_ori_float)
I_p_pstbk_lst.append(I_p_pstbk)
2024-07-03 20:32:47 +00:00
mkdir(args.output_dir)
wfp_concat = None
flag_source_has_audio = flag_is_source_video and has_audio_stream(args.source)
flag_driving_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving)
######### build the final concatenation result #########
# driving frame | source frame | generation, or source frame | generation
if flag_is_source_video:
frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, img_crop_256x256_lst, I_p_lst)
else:
frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, [img_crop_256x256], I_p_lst)
wfp_concat = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat.mp4')
# NOTE: update output fps
output_fps = source_fps if flag_is_source_video else output_fps
images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
if flag_source_has_audio or flag_driving_has_audio:
# final result with concatenation
wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat_with_audio.mp4')
# audio_from_which_video = args.source if flag_source_has_audio else args.driving # default source audio
audio_from_which_video = args.driving if flag_driving_has_audio else args.source # default driving audio
log(f"Audio is selected from {audio_from_which_video}, concat mode")
add_audio_to_video(wfp_concat, audio_from_which_video, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
2024-07-03 20:32:47 +00:00
# save the animated result
wfp = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}.mp4')
if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
2024-07-03 20:32:47 +00:00
else:
images2video(I_p_lst, wfp=wfp, fps=output_fps)
######### build the final result #########
if flag_source_has_audio or flag_driving_has_audio:
wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_with_audio.mp4')
# audio_from_which_video = args.source if flag_source_has_audio else args.driving # default source audio
audio_from_which_video = args.driving if flag_driving_has_audio else args.source # default driving audio
log(f"Audio is selected from {audio_from_which_video}")
add_audio_to_video(wfp, audio_from_which_video, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
log(f"Replace {wfp} with {wfp_with_audio}")
# final log
if wfp_template not in (None, ''):
log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
log(f'Animated video: {wfp}')
log(f'Animated video with concat: {wfp_concat}')
2024-07-03 20:32:47 +00:00
return wfp, wfp_concat