mirror of
https://github.com/k4yt3x/video2x.git
synced 2024-12-28 23:19:11 +00:00
342 lines
12 KiB
Python
Executable File
342 lines
12 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
|
|
__ __ _ _ ___ __ __
|
|
\ \ / / (_) | | |__ \ \ \ / /
|
|
\ \ / / _ __| | ___ ___ ) | \ V /
|
|
\ \/ / | | / _` | / _ \ / _ \ / / > <
|
|
\ / | | | (_| | | __/ | (_) | / /_ / . \
|
|
\/ |_| \__,_| \___| \___/ |____| /_/ \_\
|
|
|
|
|
|
Name: Video2x Controller
|
|
Author: K4YT3X
|
|
Date Created: Feb 24, 2018
|
|
Last Modified: October 23, 2018
|
|
|
|
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
|
|
available at: https://www.gnu.org/licenses/gpl-3.0.txt
|
|
|
|
(C) 2018 K4YT3X
|
|
|
|
Description: Video2X is an automation software based on
|
|
waifu2x image enlarging engine. It extracts frames from a
|
|
video, enlarge it by a number of times without losing any
|
|
details or quality, keeping lines smooth and edges sharp.
|
|
"""
|
|
from avalon_framework import Avalon
|
|
from ffmpeg import Ffmpeg
|
|
from fractions import Fraction
|
|
from waifu2x import Waifu2x
|
|
import argparse
|
|
import inspect
|
|
import json
|
|
import os
|
|
import psutil
|
|
import shutil
|
|
import subprocess
|
|
import threading
|
|
import time
|
|
import traceback
|
|
|
|
VERSION = '2.1.3'
|
|
|
|
EXEC_PATH = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe())))
|
|
FRAMES = '{}\\frames'.format(EXEC_PATH) # Folder containing extracted frames
|
|
UPSCALED = '{}\\upscaled'.format(EXEC_PATH) # Folder containing enlarges frames
|
|
|
|
|
|
def process_arguments():
|
|
"""Processes CLI arguments
|
|
|
|
This function parses all arguments
|
|
This allows users to customize options
|
|
for the output video.
|
|
"""
|
|
parser = argparse.ArgumentParser()
|
|
|
|
# Video options
|
|
options_group = parser.add_argument_group('Options')
|
|
options_group.add_argument('--width', help='Output video width', action='store', type=int, default=False)
|
|
options_group.add_argument('--height', help='Output video height', action='store', type=int, default=False)
|
|
options_group.add_argument('-v', '--video', help='Specify source video file', action='store', default=False)
|
|
options_group.add_argument('-o', '--output', help='Specify output file', action='store', default=False)
|
|
options_group.add_argument('-y', '--model_type', help='Specify model to use', action='store', default='anime_style_art_rgb')
|
|
options_group.add_argument('-t', '--threads', help='Specify number of threads to use for upscaling', action='store', type=int, default=5)
|
|
options_group.add_argument('-c', '--config', help='Manually specify config file', action='store', default='video2x.json')
|
|
|
|
# Render drivers, at least one option must be specified
|
|
driver_group = parser.add_argument_group('Render Drivers')
|
|
driver_group.add_argument('--cpu', help='Use CPU for enlarging', action='store_true', default=False)
|
|
driver_group.add_argument('--gpu', help='Use GPU for enlarging', action='store_true', default=False)
|
|
driver_group.add_argument('--cudnn', help='Use CUDNN for enlarging', action='store_true', default=False)
|
|
return parser.parse_args()
|
|
|
|
|
|
def print_logo():
|
|
print('__ __ _ _ ___ __ __')
|
|
print('\\ \\ / / (_) | | |__ \\ \\ \\ / /')
|
|
print(' \\ \\ / / _ __| | ___ ___ ) | \\ V /')
|
|
print(' \\ \\/ / | | / _` | / _ \\ / _ \\ / / > <')
|
|
print(' \\ / | | | (_| | | __/ | (_) | / /_ / . \\')
|
|
print(' \\/ |_| \\__,_| \\___| \\___/ |____| /_/ \\_\\')
|
|
print('\n Video2X Video Enlarger')
|
|
spaces = ((44 - len("Version " + VERSION)) // 2) * " "
|
|
print('{}\n{} Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
|
|
|
|
|
|
def read_config():
|
|
""" Reads configuration file
|
|
|
|
Returns a dictionary read by json.
|
|
"""
|
|
with open(args.config, 'r') as raw_config:
|
|
config = json.load(raw_config)
|
|
return config
|
|
|
|
|
|
def get_video_info():
|
|
"""Gets original video information
|
|
|
|
Retrieves original video information using
|
|
ffprobe, then export it into json file.
|
|
Finally it reads, parses the json file and
|
|
returns a dictionary
|
|
|
|
Returns:
|
|
dictionary -- original video information
|
|
"""
|
|
json_str = subprocess.check_output(
|
|
'\"{}ffprobe.exe\" -v quiet -print_format json -show_format -show_streams \"{}\"'.format(ffmpeg_path, args.video))
|
|
return json.loads(json_str.decode('utf-8'))
|
|
|
|
|
|
def check_model_type(args):
|
|
"""
|
|
Check if the model demanded from cli
|
|
argument is legal.
|
|
"""
|
|
models_available = ['upconv_7_anime_style_art_rgb', 'upconv_7_photo',
|
|
'anime_style_art_rgb', 'photo', 'anime_style_art_y']
|
|
if args.model_type not in models_available:
|
|
Avalon.error('Specified model type not found!')
|
|
Avalon.info('Available models:')
|
|
for model in models_available:
|
|
print(model)
|
|
exit(1)
|
|
|
|
|
|
def upscale_frames(w2):
|
|
""" Upscale video frames with waifu2x-caffe
|
|
|
|
This function upscales all the frames extracted
|
|
by ffmpeg using the waifu2x-caffe binary.
|
|
|
|
Arguments:
|
|
w2 {Waifu2x Object} -- initialized waifu2x object
|
|
"""
|
|
|
|
# Create a container for all upscaler threads
|
|
upscaler_threads = []
|
|
|
|
# List all images in the extracted frames
|
|
frames = [os.path.join(FRAMES, f) for f in os.listdir(FRAMES) if os.path.isfile(os.path.join(FRAMES, f))]
|
|
|
|
# If we have less images than threads,
|
|
# create only the threads necessary
|
|
if len(frames) < args.threads:
|
|
args.threads = len(frames)
|
|
|
|
# Move an equal amount of images into separate
|
|
# folders for each thread
|
|
images_per_thread = len(frames) // args.threads
|
|
for thread_id in range(args.threads):
|
|
thread_folder = '{}\\{}'.format(FRAMES, str(thread_id))
|
|
|
|
# Delete old folders and create new folders
|
|
if os.path.isdir(thread_folder):
|
|
shutil.rmtree(thread_folder)
|
|
os.mkdir(thread_folder)
|
|
|
|
# Begin moving images into corresponding folders
|
|
for _ in range(images_per_thread):
|
|
try:
|
|
shutil.move(frames.pop(0), thread_folder)
|
|
except IndexError:
|
|
pass
|
|
|
|
# Create thread
|
|
thread = threading.Thread(target=w2.upscale, args=(thread_folder, UPSCALED, args.width, args.height))
|
|
thread.name = str(thread_id)
|
|
|
|
# Add threads into the pool
|
|
upscaler_threads.append(thread)
|
|
|
|
# Start all threads
|
|
for thread in upscaler_threads:
|
|
thread.start()
|
|
|
|
# Wait for threads to finish
|
|
for thread in upscaler_threads:
|
|
thread.join()
|
|
|
|
|
|
def video2x():
|
|
"""Main controller for Video2X
|
|
|
|
This function controls the flow of video conversion
|
|
and handles all necessary functions.
|
|
"""
|
|
|
|
check_model_type(args)
|
|
|
|
# Parse arguments for waifu2x
|
|
if args.cpu:
|
|
method = 'cpu'
|
|
elif args.gpu:
|
|
method = 'gpu'
|
|
elif args.cudnn:
|
|
method = 'cudnn'
|
|
|
|
# Initialize objects for ffmpeg and waifu2x-caffe
|
|
fm = Ffmpeg(ffmpeg_path, args.output, ffmpeg_arguments)
|
|
w2 = Waifu2x(waifu2x_path, method, args.model_type)
|
|
|
|
# Clear and create directories
|
|
if os.path.isdir(FRAMES):
|
|
shutil.rmtree(FRAMES)
|
|
if os.path.isdir(UPSCALED):
|
|
shutil.rmtree(UPSCALED)
|
|
os.mkdir(FRAMES)
|
|
os.mkdir(UPSCALED)
|
|
|
|
# Extract frames from video
|
|
fm.extract_frames(args.video, FRAMES)
|
|
|
|
Avalon.info('Reading video information')
|
|
info = get_video_info()
|
|
# Analyze original video with ffprobe and retrieve framerate
|
|
# width, height = info['streams'][0]['width'], info['streams'][0]['height']
|
|
|
|
# Find index of video stream
|
|
video_stream_index = None
|
|
for stream in info['streams']:
|
|
if stream['codec_type'] == 'video':
|
|
video_stream_index = stream['index']
|
|
break
|
|
|
|
# Exit if no video stream found
|
|
if video_stream_index is None:
|
|
Avalon.error('Aborting: No video stream found')
|
|
|
|
# Get average frame rate of video stream
|
|
framerate = float(Fraction(info['streams'][video_stream_index]['avg_frame_rate']))
|
|
Avalon.info('Framerate: {}'.format(framerate))
|
|
|
|
# Upscale images one by one using waifu2x
|
|
Avalon.info('Starting to upscale extracted images')
|
|
upscale_frames(w2)
|
|
Avalon.info('Upscaling completed')
|
|
|
|
# Frames to Video
|
|
Avalon.info('Converting extracted frames into video')
|
|
fm.convert_video(framerate, '{}x{}'.format(args.width, args.height), UPSCALED)
|
|
Avalon.info('Conversion completed')
|
|
|
|
# Extract and press audio in
|
|
Avalon.info('Stripping audio track from original video')
|
|
fm.extract_audio(args.video, UPSCALED)
|
|
Avalon.info('Inserting audio track into new video')
|
|
fm.insert_audio_track(UPSCALED)
|
|
|
|
|
|
# /////////////////// Execution /////////////////// #
|
|
|
|
# This is not a library
|
|
if __name__ != '__main__':
|
|
Avalon.error('This file cannot be imported')
|
|
exit(1)
|
|
|
|
# Process cli arguments
|
|
args = process_arguments()
|
|
|
|
# Print video2x banner
|
|
print_logo()
|
|
|
|
# Check if arguments are valid / all necessary argument
|
|
# values are specified
|
|
if not args.video:
|
|
Avalon.error('You need to specify the video to process')
|
|
exit(1)
|
|
elif not args.width or not args.height:
|
|
Avalon.error('You must specify output video width and height')
|
|
exit(1)
|
|
elif not args.output:
|
|
Avalon.error('You need to specify the output video name')
|
|
exit(1)
|
|
elif not args.cpu and not args.gpu and not args.cudnn:
|
|
Avalon.error('You need to specify the enlarging processing unit')
|
|
exit(1)
|
|
|
|
# Convert paths to absolute paths
|
|
args.video = os.path.abspath(args.video)
|
|
args.output = os.path.abspath(args.output)
|
|
|
|
# Read configurations from config file
|
|
config = read_config()
|
|
waifu2x_path = config['waifu2x_path']
|
|
ffmpeg_path = config['ffmpeg_path']
|
|
ffmpeg_arguments = config['ffmpeg_arguments']
|
|
|
|
# Add a forward slash to directory if not present
|
|
# otherwise there will be a format error
|
|
if ffmpeg_path[-1] != '/' and ffmpeg_path[-1] != '\\':
|
|
ffmpeg_path = '{}/'.format(ffmpeg_path)
|
|
|
|
# Check if FFMPEG and waifu2x are present
|
|
if not os.path.isdir(ffmpeg_path):
|
|
Avalon.error('FFMPEG binaries not found')
|
|
Avalon.error('Please specify FFMPEG binaries location in config file')
|
|
Avalon.error('Current value: {}'.format(ffmpeg_path))
|
|
raise FileNotFoundError(ffmpeg_path)
|
|
if not os.path.isfile(waifu2x_path):
|
|
Avalon.error('Waifu2x CUI executable not found')
|
|
Avalon.error('Please specify Waifu2x CUI location in config file')
|
|
Avalon.error('Current value: {}'.format(waifu2x_path))
|
|
raise FileNotFoundError(waifu2x_path)
|
|
|
|
# Check usable memory
|
|
# Warn the user if insufficient memory is available for
|
|
# the number of threads that the user have chosen. Each
|
|
# thread might take up to 2.5 GB during initialization.
|
|
MEM_PER_THREAD = 2.5
|
|
memory_available = psutil.virtual_memory().available / (1024 ** 3)
|
|
|
|
# If user doesn't even have enough memory to run even one thread
|
|
if memory_available < MEM_PER_THREAD:
|
|
Avalon.warning('You might have an insufficient amount of memory available to run this program ({} GB)'.format(memory_available))
|
|
Avalon.warning('Proceed with caution')
|
|
# If memory available is less than needed, warn the user
|
|
elif memory_available < (MEM_PER_THREAD * args.threads):
|
|
Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB during initialization')
|
|
Avalon.warning('You demanded {} threads to be created, but you only have {} GB memory available'.format(args.threads, round(memory_available, 4)))
|
|
Avalon.warning('{} GB of memory is recommended for {} threads'.format(MEM_PER_THREAD * args.threads, args.threads))
|
|
Avalon.warning('With your current amount of memory available, {} threads is recommended'.format(int(memory_available // MEM_PER_THREAD)))
|
|
|
|
# Ask the user if he / she wants to change to the recommended
|
|
# number of threads
|
|
if Avalon.ask('Change to the recommended value?', True):
|
|
args.threads = int(memory_available // MEM_PER_THREAD)
|
|
else:
|
|
Avalon.warning('Proceed with caution')
|
|
|
|
# Start execution
|
|
try:
|
|
begin_time = time.time()
|
|
video2x()
|
|
Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
|
|
except Exception:
|
|
Avalon.error('An exception occurred')
|
|
traceback.print_exc()
|