video2x/bin/video2x.py
2019-02-01 10:59:29 -05:00

169 lines
7.5 KiB
Python
Executable File

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
__ __ _ _ ___ __ __
\ \ / / (_) | | |__ \ \ \ / /
\ \ / / _ __| | ___ ___ ) | \ V /
\ \/ / | | / _` | / _ \ / _ \ / / > <
\ / | | | (_| | | __/ | (_) | / /_ / . \
\/ |_| \__,_| \___| \___/ |____| /_/ \_\
Name: Video2X Controller
Author: K4YT3X
Date Created: Feb 24, 2018
Last Modified: December 19, 2018
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
available at: https://www.gnu.org/licenses/gpl-3.0.txt
(C) 2018-2019 K4YT3X
Description: Video2X is an automation software based on
waifu2x image enlarging engine. It extracts frames from a
video, enlarge it by a number of times without losing any
details or quality, keeping lines smooth and edges sharp.
"""
from avalon_framework import Avalon
from upscaler import Upscaler
from upscaler import MODELS_AVAILABLE
import argparse
import json
import os
import psutil
import time
import traceback
VERSION = '2.2.1'
# Each thread might take up to 2.5 GB during initialization.
# (system memory, not to be confused with GPU memory)
MEM_PER_THREAD = 2.5
def process_arguments():
"""Processes CLI arguments
This function parses all arguments
This allows users to customize options
for the output video.
"""
parser = argparse.ArgumentParser()
# Video options
basic_options = parser.add_argument_group('Basic Options')
basic_options.add_argument('-i', '--input', help='Specify source video file/directory', action='store', default=False, required=True)
basic_options.add_argument('-o', '--output', help='Specify output video file/directory', action='store', default=False, required=True)
basic_options.add_argument('-m', '--method', help='Specify upscaling method', action='store', default='gpu', choices=['cpu', 'gpu', 'cudnn'], required=True)
basic_options.add_argument('-y', '--model_type', help='Specify model to use', action='store', default='anime_style_art_rgb', choices=MODELS_AVAILABLE)
basic_options.add_argument('-t', '--threads', help='Specify number of threads to use for upscaling', action='store', type=int, default=5)
basic_options.add_argument('-c', '--config', help='Manually specify config file', action='store', default='video2x.json')
# Scaling options
# scaling_options = parser.add_argument_group('Scaling Options', required=True) # TODO: (width & height) || (factor)
scaling_options = parser.add_argument_group('Scaling Options') # TODO: (width & height) || (factor)
scaling_options.add_argument('--width', help='Output video width', action='store', type=int, default=False)
scaling_options.add_argument('--height', help='Output video height', action='store', type=int, default=False)
scaling_options.add_argument('-f', '--factor', help='Factor to upscale the videos by', action='store', type=int, default=False)
# Parse arguments
return parser.parse_args()
def print_logo():
print('__ __ _ _ ___ __ __')
print('\\ \\ / / (_) | | |__ \\ \\ \\ / /')
print(' \\ \\ / / _ __| | ___ ___ ) | \\ V /')
print(' \\ \\/ / | | / _` | / _ \\ / _ \\ / / > <')
print(' \\ / | | | (_| | | __/ | (_) | / /_ / . \\')
print(' \\/ |_| \\__,_| \\___| \\___/ |____| /_/ \\_\\')
print('\n Video2X Video Enlarger')
spaces = ((44 - len("Version {}".format(VERSION))) // 2) * " "
print('{}\n{} Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
def check_system_memory():
""" Check usable system memory
Warn the user if insufficient memory is available for
the number of threads that the user have chosen.
"""
memory_available = psutil.virtual_memory().available / (1024 ** 3)
# If user doesn't even have enough memory to run even one thread
if memory_available < MEM_PER_THREAD:
Avalon.warning('You might have an insufficient amount of memory available to run this program ({} GB)'.format(memory_available))
Avalon.warning('Proceed with caution')
# If memory available is less than needed, warn the user
elif memory_available < (MEM_PER_THREAD * args.threads):
Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB during initialization')
Avalon.warning('You demanded {} threads to be created, but you only have {} GB memory available'.format(args.threads, round(memory_available, 4)))
Avalon.warning('{} GB of memory is recommended for {} threads'.format(MEM_PER_THREAD * args.threads, args.threads))
Avalon.warning('With your current amount of memory available, {} threads is recommended'.format(int(memory_available // MEM_PER_THREAD)))
# Ask the user if he / she wants to change to the recommended
# number of threads
if Avalon.ask('Change to the recommended value?', True):
args.threads = int(memory_available // MEM_PER_THREAD)
else:
Avalon.warning('Proceed with caution')
def read_config(config_file):
""" Reads configuration file
Returns a dictionary read by JSON.
"""
with open(config_file, 'r') as raw_config:
config = json.load(raw_config)
return config
# /////////////////// Execution /////////////////// #
# This is not a library
if __name__ != '__main__':
Avalon.error('This file cannot be imported')
raise ImportError('{} cannot be imported'.format(__file__))
print_logo()
# Process CLI arguments
args = process_arguments()
# Check system available memory
check_system_memory()
# Read configurations from JSON
config = read_config(args.config)
waifu2x_path = config['waifu2x_path']
ffmpeg_path = config['ffmpeg_path']
ffmpeg_arguments = config['ffmpeg_arguments']
ffmpeg_hwaccel = config['ffmpeg_hwaccel']
# Start execution
try:
# Start timer
begin_time = time.time()
if os.path.isfile(args.input):
""" Upscale single video file """
Avalon.info('Upscaling single video file: {}'.format(args.input))
upscaler = Upscaler(input_video=args.input, output_video=args.output, method=args.method, waifu2x_path=waifu2x_path, ffmpeg_path=ffmpeg_path, ffmpeg_arguments=ffmpeg_arguments, ffmpeg_hwaccel=ffmpeg_hwaccel, output_width=args.width, output_height=args.height, factor=args.factor, model_type=args.model_type, threads=args.threads)
upscaler.run()
elif os.path.isdir(args.input):
""" Upscale videos in a folder/directory """
Avalon.info('Upscaling videos in folder: {}'.format(args.input))
for input_video in [f for f in os.listdir(args.input) if os.path.isfile(os.path.join(args.input, f))]:
output_video = '{}\\{}'.format(args.output, input_video)
upscaler = Upscaler(input_video=os.path.join(args.input, input_video), output_video=output_video, method=args.method, waifu2x_path=waifu2x_path, ffmpeg_path=ffmpeg_path, ffmpeg_arguments=ffmpeg_arguments, ffmpeg_hwaccel=ffmpeg_hwaccel, output_width=args.width, output_height=args.height, factor=args.factor, model_type=args.model_type, threads=args.threads)
upscaler.run()
else:
Avalon.error('Input path is neither a file nor a folder/directory')
raise FileNotFoundError('{} is neither file nor folder/directory'.format(args.input))
Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
except Exception:
Avalon.error('An exception occurred')
traceback.print_exc()