mirror of
https://github.com/k4yt3x/video2x.git
synced 2025-01-04 04:39:10 +00:00
250 lines
9.9 KiB
Python
Executable File
250 lines
9.9 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
# -*- coding: utf-8 -*-
|
|
"""
|
|
Name: Video2X Upscaler
|
|
Author: K4YT3X
|
|
Date Created: December 10, 2018
|
|
Last Modified: February 21, 2019
|
|
|
|
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
|
|
available at: https://www.gnu.org/licenses/gpl-3.0.txt
|
|
|
|
(C) 2018-2019 K4YT3X
|
|
"""
|
|
|
|
from avalon_framework import Avalon
|
|
from exceptions import *
|
|
from ffmpeg import Ffmpeg
|
|
from fractions import Fraction
|
|
from waifu2x_caffe import Waifu2xCaffe
|
|
from waifu2x_converter import Waifu2xConverter
|
|
import os
|
|
import re
|
|
import shutil
|
|
import tempfile
|
|
import threading
|
|
|
|
MODELS_AVAILABLE = ['upconv_7_anime_style_art_rgb', 'upconv_7_photo',
|
|
'anime_style_art_rgb', 'photo', 'anime_style_art_y']
|
|
|
|
|
|
class Upscaler:
|
|
|
|
def __init__(self, input_video, output_video, method, waifu2x_path, ffmpeg_path, waifu2x_driver='waifu2x_caffe', ffmpeg_arguments=[], ffmpeg_hwaccel='gpu', output_width=False, output_height=False, ratio=False, model_type='anime_style_art_rgb', threads=3, extracted_frames=False, upscaled_frames=False, preserve_frames=False):
|
|
# Mandatory arguments
|
|
self.input_video = input_video
|
|
self.output_video = output_video
|
|
self.method = method
|
|
self.waifu2x_path = waifu2x_path
|
|
self.ffmpeg_path = ffmpeg_path
|
|
self.waifu2x_driver = waifu2x_driver
|
|
|
|
# Check sanity of waifu2x_driver option
|
|
if waifu2x_driver != 'waifu2x_caffe' and waifu2x_driver != 'waifu2x_converter':
|
|
raise Exception('Unrecognized waifu2x driver: {}'.format(waifu2x_driver))
|
|
|
|
# Optional arguments
|
|
self.ffmpeg_arguments = ffmpeg_arguments
|
|
self.ffmpeg_hwaccel = ffmpeg_hwaccel
|
|
self.output_width = output_width
|
|
self.output_height = output_height
|
|
self.ratio = ratio
|
|
self.model_type = model_type
|
|
self.threads = threads
|
|
|
|
# Make temporary directories
|
|
self.extracted_frames = extracted_frames
|
|
if not extracted_frames:
|
|
self.extracted_frames = tempfile.mkdtemp()
|
|
Avalon.debug_info('Extracted frames is being saved to: {}'.format(self.extracted_frames))
|
|
|
|
self.upscaled_frames = upscaled_frames
|
|
if not upscaled_frames:
|
|
self.upscaled_frames = tempfile.mkdtemp()
|
|
Avalon.debug_info('Upscaled frames is being saved to: {}'.format(self.upscaled_frames))
|
|
|
|
self.preserve_frames = preserve_frames
|
|
|
|
def __del__(self):
|
|
# Delete temp directories when done
|
|
# Avalon framework cannot be used if python is shutting down
|
|
# Therefore, plain print is used
|
|
if not self.preserve_frames:
|
|
print('Deleting cache directory: {}'.format(self.extracted_frames))
|
|
shutil.rmtree(self.extracted_frames)
|
|
print('Deleting cache directory: {}'.format(self.upscaled_frames))
|
|
shutil.rmtree(self.upscaled_frames)
|
|
|
|
def _check_model_type(self, args):
|
|
""" Validate upscaling model
|
|
"""
|
|
if self.model_type not in MODELS_AVAILABLE:
|
|
raise InvalidModelType('Specified model type not available')
|
|
|
|
def _check_arguments(self):
|
|
# Check if arguments are valid / all necessary argument
|
|
# values are specified
|
|
if not self.input_video:
|
|
raise ArgumentError('You need to specify the video to process')
|
|
elif (not self.output_width or not self.output_height) and not self.ratio:
|
|
raise ArgumentError('You must specify output video width and height or upscale factor')
|
|
elif not self.output_video:
|
|
raise ArgumentError('You need to specify the output video name')
|
|
elif not self.method:
|
|
raise ArgumentError('You need to specify the enlarging processing unit')
|
|
|
|
def _upscale_frames(self, w2):
|
|
""" Upscale video frames with waifu2x-caffe
|
|
|
|
This function upscales all the frames extracted
|
|
by ffmpeg using the waifu2x-caffe binary.
|
|
|
|
Arguments:
|
|
w2 {Waifu2x Object} -- initialized waifu2x object
|
|
"""
|
|
|
|
# It's easier to do multi-threading with waifu2x_converter
|
|
# The number of threads can be passed directly to waifu2x_converter
|
|
if self.waifu2x_driver == 'waifu2x_converter':
|
|
w2.upscale(self.extracted_frames, self.upscaled_frames, self.ratio, self.threads)
|
|
for image in [f for f in os.listdir(self.upscaled_frames) if os.path.isfile(os.path.join(self.upscaled_frames, f))]:
|
|
renamed = re.sub('_\[.*-.*\]\[x(\d+(\.\d+)?)\]\.png', '.png', image)
|
|
shutil.move('{}\\{}'.format(self.upscaled_frames, image), '{}\\{}'.format(self.upscaled_frames, renamed))
|
|
return
|
|
|
|
# Create a container for all upscaler threads
|
|
upscaler_threads = []
|
|
|
|
# List all images in the extracted frames
|
|
frames = [os.path.join(self.extracted_frames, f) for f in os.listdir(self.extracted_frames) if os.path.isfile(os.path.join(self.extracted_frames, f))]
|
|
|
|
# If we have less images than threads,
|
|
# create only the threads necessary
|
|
if len(frames) < self.threads:
|
|
self.threads = len(frames)
|
|
|
|
# Create a folder for each thread and append folder
|
|
# name into a list
|
|
|
|
thread_pool = []
|
|
for thread_id in range(self.threads):
|
|
thread_folder = '{}\\{}'.format(self.extracted_frames, str(thread_id))
|
|
|
|
# Delete old folders and create new folders
|
|
if os.path.isdir(thread_folder):
|
|
shutil.rmtree(thread_folder)
|
|
os.mkdir(thread_folder)
|
|
|
|
# Append folder path into list
|
|
thread_pool.append((thread_folder, thread_id))
|
|
|
|
# Evenly distribute images into each folder
|
|
# until there is none left in the folder
|
|
for image in frames:
|
|
# Move image
|
|
shutil.move(image, thread_pool[0][0])
|
|
# Rotate list
|
|
thread_pool = thread_pool[-1:] + thread_pool[:-1]
|
|
|
|
# Create threads and start them
|
|
for thread_info in thread_pool:
|
|
# Create thread
|
|
thread = threading.Thread(target=w2.upscale, args=(thread_info[0], self.upscaled_frames, self.output_width, self.output_height))
|
|
thread.name = thread_info[1]
|
|
|
|
# Add threads into the pool
|
|
upscaler_threads.append(thread)
|
|
|
|
# Start all threads
|
|
for thread in upscaler_threads:
|
|
thread.start()
|
|
|
|
# Wait for threads to finish
|
|
for thread in upscaler_threads:
|
|
thread.join()
|
|
|
|
def run(self):
|
|
"""Main controller for Video2X
|
|
|
|
This function controls the flow of video conversion
|
|
and handles all necessary functions.
|
|
"""
|
|
|
|
# Parse arguments for waifu2x
|
|
# Check argument sanity
|
|
self._check_model_type(self.model_type)
|
|
self._check_arguments()
|
|
|
|
# Convert paths to absolute paths
|
|
self.input_video = os.path.abspath(self.input_video)
|
|
self.output_video = os.path.abspath(self.output_video)
|
|
|
|
# Add a forward slash to directory if not present
|
|
# otherwise there will be a format error
|
|
if self.ffmpeg_path[-1] != '/' and self.ffmpeg_path[-1] != '\\':
|
|
self.ffmpeg_path = '{}/'.format(self.ffmpeg_path)
|
|
|
|
# Check if FFMPEG and waifu2x are present
|
|
if not os.path.isdir(self.ffmpeg_path):
|
|
raise FileNotFoundError(self.ffmpeg_path)
|
|
if not os.path.isfile(self.waifu2x_path) and not os.path.isdir(self.waifu2x_path):
|
|
raise FileNotFoundError(self.waifu2x_path)
|
|
|
|
# Initialize objects for ffmpeg and waifu2x-caffe
|
|
fm = Ffmpeg(self.ffmpeg_path, self.ffmpeg_arguments)
|
|
|
|
# Initialize waifu2x driver
|
|
if self.waifu2x_driver == 'waifu2x_caffe':
|
|
w2 = Waifu2xCaffe(self.waifu2x_path, self.method, self.model_type)
|
|
elif self.waifu2x_driver == 'waifu2x_converter':
|
|
w2 = Waifu2xConverter(self.waifu2x_path)
|
|
else:
|
|
raise Exception('Unrecognized waifu2x driver: {}'.format(self.waifu2x_driver))
|
|
|
|
# Extract frames from video
|
|
fm.extract_frames(self.input_video, self.extracted_frames)
|
|
|
|
Avalon.info('Reading video information')
|
|
video_info = fm.get_video_info(self.input_video)
|
|
# Analyze original video with ffprobe and retrieve framerate
|
|
# width, height = info['streams'][0]['width'], info['streams'][0]['height']
|
|
|
|
# Find index of video stream
|
|
video_stream_index = None
|
|
for stream in video_info['streams']:
|
|
if stream['codec_type'] == 'video':
|
|
video_stream_index = stream['index']
|
|
break
|
|
|
|
# Exit if no video stream found
|
|
if video_stream_index is None:
|
|
Avalon.error('Aborting: No video stream found')
|
|
exit(1)
|
|
|
|
# Get average frame rate of video stream
|
|
framerate = float(Fraction(video_info['streams'][video_stream_index]['avg_frame_rate']))
|
|
Avalon.info('Framerate: {}'.format(framerate))
|
|
|
|
# Width/height will be coded width/height x upscale factor
|
|
if self.ratio:
|
|
coded_width = video_info['streams'][video_stream_index]['coded_width']
|
|
coded_height = video_info['streams'][video_stream_index]['coded_height']
|
|
self.output_width = self.ratio * coded_width
|
|
self.output_height = self.ratio * coded_height
|
|
|
|
# Upscale images one by one using waifu2x
|
|
Avalon.info('Starting to upscale extracted images')
|
|
self._upscale_frames(w2)
|
|
Avalon.info('Upscaling completed')
|
|
|
|
# Frames to Video
|
|
Avalon.info('Converting extracted frames into video')
|
|
|
|
# Use user defined output size
|
|
fm.convert_video(framerate, '{}x{}'.format(self.output_width, self.output_height), self.upscaled_frames)
|
|
Avalon.info('Conversion completed')
|
|
|
|
# Migrate audio tracks and subtitles
|
|
Avalon.info('Migrating audio tracks and subtitles to upscaled video')
|
|
fm.migrate_audio_tracks_subtitles(self.input_video, self.output_video, self.upscaled_frames)
|