video2x/bin/video2x.py
2019-03-31 02:17:10 -04:00

308 lines
13 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
__ __ _ _ ___ __ __
\ \ / / (_) | | |__ \ \ \ / /
\ \ / / _ __| | ___ ___ ) | \ V /
\ \/ / | | / _` | / _ \ / _ \ / / > <
\ / | | | (_| | | __/ | (_) | / /_ / . \
\/ |_| \__,_| \___| \___/ |____| /_/ \_\
Name: Video2X Controller
Author: K4YT3X
Date Created: Feb 24, 2018
Last Modified: March 30, 2019
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
available at: https://www.gnu.org/licenses/gpl-3.0.txt
(C) 2018-2019 K4YT3X
Video2X is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Video2X is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Description: Video2X is an automation software based on waifu2x image
enlarging engine. It extracts frames from a video, enlarge it by a
number of times without losing any details or quality, keeping lines
smooth and edges sharp.
"""
from avalon_framework import Avalon
from upscaler import Upscaler
import argparse
import GPUtil
import json
import os
import psutil
import shutil
import sys
import tempfile
import time
import traceback
VERSION = '2.7.0'
# each thread might take up to 2.5 GB during initialization.
# (system memory, not to be confused with GPU memory)
SYS_MEM_PER_THREAD = 2.5
GPU_MEM_PER_THREAD = 3.5
def process_arguments():
"""Processes CLI arguments
This function parses all arguments
This allows users to customize options
for the output video.
"""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# video options
file_options = parser.add_argument_group('File Options')
file_options.add_argument('-i', '--input', help='Source video file/directory', action='store', required=True)
file_options.add_argument('-o', '--output', help='Output video file/directory', action='store', required=True)
# upscaler options
upscaler_options = parser.add_argument_group('Upscaler Options')
upscaler_options.add_argument('-m', '--method', help='Upscaling method', action='store', default='gpu', choices=['cpu', 'gpu', 'cudnn'], required=True)
upscaler_options.add_argument('-d', '--driver', help='Waifu2x driver', action='store', default='waifu2x_caffe', choices=['waifu2x_caffe', 'waifu2x_converter'])
upscaler_options.add_argument('-y', '--model_dir', help='Folder containing model JSON files', action='store')
upscaler_options.add_argument('-t', '--threads', help='Number of threads to use for upscaling', action='store', type=int, default=5)
upscaler_options.add_argument('-c', '--config', help='Video2X config file location', action='store', default='{}\\video2x.json'.format(os.path.dirname(os.path.abspath(sys.argv[0]))))
upscaler_options.add_argument('-b', '--batch', help='Enable batch mode (select all default values to questions)', action='store_true')
# scaling options
scaling_options = parser.add_argument_group('Scaling Options')
scaling_options.add_argument('--width', help='Output video width', action='store', type=int)
scaling_options.add_argument('--height', help='Output video height', action='store', type=int)
scaling_options.add_argument('-r', '--ratio', help='Scaling ratio', action='store', type=float)
# parse arguments
return parser.parse_args()
def print_logo():
print('__ __ _ _ ___ __ __')
print('\\ \\ / / (_) | | |__ \\ \\ \\ / /')
print(' \\ \\ / / _ __| | ___ ___ ) | \\ V /')
print(' \\ \\/ / | | / _` | / _ \\ / _ \\ / / > <')
print(' \\ / | | | (_| | | __/ | (_) | / /_ / . \\')
print(' \\/ |_| \\__,_| \\___| \\___/ |____| /_/ \\_\\')
print('\n Video2X Video Enlarger')
spaces = ((44 - len("Version {}".format(VERSION))) // 2) * " "
print('{}\n{} Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
def check_memory():
""" Check usable system memory
Warn the user if insufficient memory is available for
the number of threads that the user have chosen.
"""
memory_status = []
# get system available memory
system_memory_available = psutil.virtual_memory().available / (1024 ** 3)
memory_status.append(('system', system_memory_available))
# check if Nvidia-smi is available
# GPUtil requires nvidia-smi.exe to interact with GPU
if args.method == 'gpu' or args.method == 'cudnn':
if not os.path.isfile('C:\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe'):
# Nvidia System Management Interface not available
Avalon.warning('Nvidia-smi not available, skipping available memory check')
Avalon.warning('If you experience error \"cudaSuccess out of memory\", try reducing number of threads you\'re using')
else:
try:
# "0" is GPU ID. Both waifu2x drivers use the first GPU available, therefore only 0 makes sense
gpu_memory_available = (GPUtil.getGPUs()[0].memoryTotal - GPUtil.getGPUs()[0].memoryUsed) / 1024
memory_status.append(('GPU', gpu_memory_available))
except ValueError:
pass
# go though each checkable memory type and check availability
for memory_type, memory_available in memory_status:
if memory_type == 'system':
mem_per_thread = SYS_MEM_PER_THREAD
else:
mem_per_thread = GPU_MEM_PER_THREAD
# if user doesn't even have enough memory to run even one thread
if memory_available < mem_per_thread:
Avalon.warning('You might have insufficient amount of {} memory available to run this program ({} GB)'.format(memory_type, memory_available))
Avalon.warning('Proceed with caution')
if args.threads > 1:
if Avalon.ask('Reduce number of threads to avoid crashing?', default=True, batch=args.batch):
args.threads = 1
# if memory available is less than needed, warn the user
elif memory_available < (mem_per_thread * args.threads):
Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB of system memory')
Avalon.warning('You demanded {} threads to be created, but you only have {} GB {} memory available'.format(args.threads, round(memory_available, 4), memory_type))
Avalon.warning('{} GB of {} memory is recommended for {} threads'.format(mem_per_thread * args.threads, memory_type, args.threads))
Avalon.warning('With your current amount of {} memory available, {} threads is recommended'.format(memory_type, int(memory_available // mem_per_thread)))
# ask the user if he / she wants to change to the recommended
# number of threads
if Avalon.ask('Change to the recommended value?', default=True, batch=args.batch):
args.threads = int(memory_available // mem_per_thread)
else:
Avalon.warning('Proceed with caution')
def read_config(config_file):
""" Reads configuration file
Returns a dictionary read by JSON.
"""
with open(config_file, 'r') as raw_config:
config = json.load(raw_config)
return config
# /////////////////// Execution /////////////////// #
# this is not a library
if __name__ != '__main__':
Avalon.error('This file cannot be imported')
raise ImportError('{} cannot be imported'.format(__file__))
print_logo()
# process CLI arguments
args = process_arguments()
# arguments sanity check
if args.driver == 'waifu2x_converter' and args.width and args.height:
Avalon.error('Waifu2x Converter CPP accepts only scaling ratio')
exit(1)
if (args.width or args.height) and args.ratio:
Avalon.error('You can only specify either scaling ratio or output width and height')
exit(1)
if (args.width and not args.height) or (not args.width and args.height):
Avalon.error('You must specify both width and height')
exit(1)
# check available memory
check_memory()
# read configurations from JSON
config = read_config(args.config)
# load waifu2x configuration
if args.driver == 'waifu2x_caffe':
waifu2x_settings = config['waifu2x_caffe']
if not os.path.isfile(waifu2x_settings['waifu2x_caffe_path']):
Avalon.error('Specified waifu2x-caffe directory doesn\'t exist')
Avalon.error('Please check the configuration file settings')
raise FileNotFoundError(waifu2x_settings['waifu2x_caffe_path'])
elif args.driver == 'waifu2x_converter':
waifu2x_settings = config['waifu2x_converter']
if not os.path.isdir(waifu2x_settings['waifu2x_converter_path']):
Avalon.error('Specified waifu2x-conver-cpp directory doesn\'t exist')
Avalon.error('Please check the configuration file settings')
raise FileNotFoundError(waifu2x_settings['waifu2x_converter_path'])
# check if waifu2x path is valid
# read FFMPEG configuration
ffmpeg_settings = config['ffmpeg']
# load video2x settings
video2x_cache_folder = config['video2x']['video2x_cache_folder']
image_format = config['video2x']['image_format'].lower()
preserve_frames = config['video2x']['preserve_frames']
# create temp directories if they don't exist
if not video2x_cache_folder:
video2x_cache_folder = '{}\\video2x'.format(tempfile.gettempdir())
if video2x_cache_folder and not os.path.isdir(video2x_cache_folder):
if not os.path.isfile(video2x_cache_folder) and not os.path.islink(video2x_cache_folder):
Avalon.warning('Specified cache folder/directory {} does not exist'.format(video2x_cache_folder))
if Avalon.ask('Create folder/directory?', default=True, batch=args.batch):
if os.mkdir(video2x_cache_folder) is None:
Avalon.info('{} created'.format(video2x_cache_folder))
else:
Avalon.error('Unable to create {}'.format(video2x_cache_folder))
Avalon.error('Aborting...')
exit(1)
else:
Avalon.error('Specified cache folder/directory is a file/link')
Avalon.error('Unable to continue, exiting...')
exit(1)
# start execution
try:
# start timer
begin_time = time.time()
if os.path.isfile(args.input):
""" Upscale single video file """
Avalon.info('Upscaling single video file: {}'.format(args.input))
upscaler = Upscaler(input_video=args.input, output_video=args.output, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings)
# set optional options
upscaler.waifu2x_driver = args.driver
upscaler.scale_width = args.width
upscaler.scale_height = args.height
upscaler.scale_ratio = args.ratio
upscaler.model_dir = args.model_dir
upscaler.threads = args.threads
upscaler.video2x_cache_folder = video2x_cache_folder
upscaler.image_format = image_format
upscaler.preserve_frames = preserve_frames
# run upscaler-
upscaler.run()
upscaler.cleanup()
elif os.path.isdir(args.input):
""" Upscale videos in a folder/directory """
Avalon.info('Upscaling videos in folder/directory: {}'.format(args.input))
for input_video in [f for f in os.listdir(args.input) if os.path.isfile(os.path.join(args.input, f))]:
output_video = '{}\\{}'.format(args.output, input_video)
upscaler = Upscaler(input_video=os.path.join(args.input, input_video), output_video=output_video, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings)
# set optional options
upscaler.waifu2x_driver = args.driver
upscaler.scale_width = args.width
upscaler.scale_height = args.height
upscaler.scale_ratio = args.ratio
upscaler.model_dir = args.model_dir
upscaler.threads = args.threads
upscaler.video2x_cache_folder = video2x_cache_folder
upscaler.image_format = image_format
upscaler.preserve_frames = preserve_frames
# run upscaler
upscaler.run()
upscaler.cleanup()
else:
Avalon.error('Input path is neither a file nor a folder/directory')
raise FileNotFoundError('{} is neither file nor folder/directory'.format(args.input))
Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
except Exception:
Avalon.error('An exception has occurred')
traceback.print_exc()
Avalon.warning('If you experience error \"cudaSuccess out of memory\", try reducing number of threads you\'re using')
finally:
# remove Video2X Cache folder
try:
if not preserve_frames:
shutil.rmtree(video2x_cache_folder)
except FileNotFoundError:
pass