#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ __ __ _ _ ___ __ __ \ \ / / (_) | | |__ \ \ \ / / \ \ / / _ __| | ___ ___ ) | \ V / \ \/ / | | / _` | / _ \ / _ \ / / > < \ / | | | (_| | | __/ | (_) | / /_ / . \ \/ |_| \__,_| \___| \___/ |____| /_/ \_\ Name: Video2X Controller Author: K4YT3X Date Created: Feb 24, 2018 Last Modified: June 13, 2019 Licensed under the GNU General Public License Version 3 (GNU GPL v3), available at: https://www.gnu.org/licenses/gpl-3.0.txt (C) 2018-2019 K4YT3X Video2X is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Video2X is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . Description: Video2X is an automation software based on waifu2x image enlarging engine. It extracts frames from a video, enlarge it by a number of times without losing any details or quality, keeping lines smooth and edges sharp. """ from avalon_framework import Avalon from upscaler import Upscaler import argparse import GPUtil import json import os import psutil import re import shutil import sys import tempfile import time import traceback VERSION = '2.7.2' # each thread might take up to 2.5 GB during initialization. # (system memory, not to be confused with GPU memory) SYS_MEM_PER_THREAD = 2.5 GPU_MEM_PER_THREAD = 3.5 def process_arguments(): """Processes CLI arguments This function parses all arguments This allows users to customize options for the output video. """ parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) # video options file_options = parser.add_argument_group('File Options') file_options.add_argument('-i', '--input', help='source video file/directory', action='store') file_options.add_argument('-o', '--output', help='output video file/directory', action='store') # upscaler options upscaler_options = parser.add_argument_group('Upscaler Options') upscaler_options.add_argument('-m', '--method', help='upscaling method', action='store', default='gpu', choices=['cpu', 'gpu', 'cudnn']) upscaler_options.add_argument('-d', '--driver', help='waifu2x driver', action='store', default='waifu2x_caffe', choices=['waifu2x_caffe', 'waifu2x_converter']) upscaler_options.add_argument('-y', '--model_dir', help='directory containing model JSON files', action='store') upscaler_options.add_argument('-t', '--threads', help='number of threads to use for upscaling', action='store', type=int, default=1) upscaler_options.add_argument('-c', '--config', help='video2x config file location', action='store', default=f'{os.path.dirname(os.path.abspath(sys.argv[0]))}\\video2x.json') upscaler_options.add_argument('-b', '--batch', help='enable batch mode (select all default values to questions)', action='store_true') # scaling options scaling_options = parser.add_argument_group('Scaling Options') scaling_options.add_argument('--width', help='output video width', action='store', type=int) scaling_options.add_argument('--height', help='output video height', action='store', type=int) scaling_options.add_argument('-r', '--ratio', help='scaling ratio', action='store', type=float) # extra options extra_options = parser.add_argument_group('Extra Options') extra_options.add_argument('-v', '--version', help='display version, lawful information and exit', action='store_true') # parse arguments return parser.parse_args() def print_logo(): print('__ __ _ _ ___ __ __') print('\\ \\ / / (_) | | |__ \\ \\ \\ / /') print(' \\ \\ / / _ __| | ___ ___ ) | \\ V /') print(' \\ \\/ / | | / _` | / _ \\ / _ \\ / / > <') print(' \\ / | | | (_| | | __/ | (_) | / /_ / . \\') print(' \\/ |_| \\__,_| \\___| \\___/ |____| /_/ \\_\\') print('\n Video2X Video Enlarger') spaces = ((44 - len(f'Version {VERSION}')) // 2) * ' ' print(f'{Avalon.FM.BD}\n{spaces} Version {VERSION}\n{Avalon.FM.RST}') def check_memory(): """ Check usable system memory Warn the user if insufficient memory is available for the number of threads that the user have chosen. """ memory_status = [] # get system available memory system_memory_available = psutil.virtual_memory().available / (1024 ** 3) memory_status.append(('system', system_memory_available)) # check if Nvidia-smi is available # GPUtil requires nvidia-smi.exe to interact with GPU if args.method == 'gpu' or args.method == 'cudnn': if not os.path.isfile('C:\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe'): # Nvidia System Management Interface not available Avalon.warning('Nvidia-smi not available, skipping available memory check') Avalon.warning('If you experience error \"cudaSuccess out of memory\", try reducing number of threads you\'re using') else: try: # "0" is GPU ID. Both waifu2x drivers use the first GPU available, therefore only 0 makes sense gpu_memory_available = (GPUtil.getGPUs()[0].memoryTotal - GPUtil.getGPUs()[0].memoryUsed) / 1024 memory_status.append(('GPU', gpu_memory_available)) except ValueError: pass # go though each checkable memory type and check availability for memory_type, memory_available in memory_status: if memory_type == 'system': mem_per_thread = SYS_MEM_PER_THREAD else: mem_per_thread = GPU_MEM_PER_THREAD # if user doesn't even have enough memory to run even one thread if memory_available < mem_per_thread: Avalon.warning(f'You might have insufficient amount of {memory_type} memory available to run this program ({memory_available} GB)') Avalon.warning('Proceed with caution') if args.threads > 1: if Avalon.ask('Reduce number of threads to avoid crashing?', default=True, batch=args.batch): args.threads = 1 # if memory available is less than needed, warn the user elif memory_available < (mem_per_thread * args.threads): Avalon.warning(f'Each waifu2x-caffe thread will require up to {SYS_MEM_PER_THREAD} GB of system memory') Avalon.warning(f'You demanded {args.threads} threads to be created, but you only have {round(memory_available, 4)} GB {memory_type} memory available') Avalon.warning(f'{mem_per_thread * args.threads} GB of {memory_type} memory is recommended for {args.threads} threads') Avalon.warning(f'With your current amount of {memory_type} memory available, {int(memory_available // mem_per_thread)} threads is recommended') # ask the user if he / she wants to change to the recommended # number of threads if Avalon.ask('Change to the recommended value?', default=True, batch=args.batch): args.threads = int(memory_available // mem_per_thread) else: Avalon.warning('Proceed with caution') def read_config(config_file): """ Reads configuration file Returns a dictionary read by JSON. """ with open(config_file, 'r') as raw_config: config = json.load(raw_config) return config def absolutify_paths(config): """ Check to see if paths to binaries are absolute This function checks if paths to binary files are absolute. If not, then absolutify the path. Arguments: config {dict} -- configuration file dictionary Returns: dict -- configuration file dictionary """ current_directory = os.path.dirname(os.path.abspath(sys.argv[0])) # check waifu2x-caffe path if not re.match('^[a-z]:', config['waifu2x_caffe']['waifu2x_caffe_path'], re.IGNORECASE): config['waifu2x_caffe']['waifu2x_caffe_path'] = f'{current_directory}\\{config["waifu2x_caffe"]["waifu2x_caffe_path"]}' # check waifu2x-converter-cpp path if not re.match('^[a-z]:', config['waifu2x_converter']['waifu2x_converter_path'], re.IGNORECASE): config['waifu2x_converter']['waifu2x_converter_path'] = f'{current_directory}\\{config["waifu2x_converter"]["waifu2x_converter_path"]}' # check ffmpeg path if not re.match('^[a-z]:', config['ffmpeg']['ffmpeg_path'], re.IGNORECASE): config['ffmpeg']['ffmpeg_path'] = f'{current_directory}\\{config["ffmpeg"]["ffmpeg_path"]}' # check video2x cache path if config['video2x']['video2x_cache_directory']: if not re.match('^[a-z]:', config['video2x']['video2x_cache_directory'], re.IGNORECASE): config['video2x']['video2x_cache_directory'] = f'{current_directory}\\{config["video2x"]["video2x_cache_directory"]}' return config # /////////////////// Execution /////////////////// # # this is not a library if __name__ != '__main__': Avalon.error('This file cannot be imported') raise ImportError(f'{__file__} cannot be imported') # print video2x logo print_logo() # process CLI arguments args = process_arguments() # display version and lawful informaition if args.version: print(f'Video2X Version: {VERSION}') print('Author: K4YT3X') print('License: GNU GPL v3') print('Github Page: https://github.com/k4yt3x/video2x') print('Contact: k4yt3x@k4yt3x.com') exit(0) # arguments sanity check if not args.input: Avalon.error('You must specify input video file/directory path') exit(1) if not args.output: Avalon.error('You must specify output video file/directory path') exit(1) if args.driver == 'waifu2x_converter' and args.width and args.height: Avalon.error('Waifu2x Converter CPP accepts only scaling ratio') exit(1) if (args.width or args.height) and args.ratio: Avalon.error('You can only specify either scaling ratio or output width and height') exit(1) if (args.width and not args.height) or (not args.width and args.height): Avalon.error('You must specify both width and height') exit(1) # check available memory check_memory() # read configurations from JSON config = read_config(args.config) config = absolutify_paths(config) # load waifu2x configuration if args.driver == 'waifu2x_caffe': waifu2x_settings = config['waifu2x_caffe'] if not os.path.isfile(waifu2x_settings['waifu2x_caffe_path']): Avalon.error('Specified waifu2x-caffe directory doesn\'t exist') Avalon.error('Please check the configuration file settings') raise FileNotFoundError(waifu2x_settings['waifu2x_caffe_path']) elif args.driver == 'waifu2x_converter': waifu2x_settings = config['waifu2x_converter'] if not os.path.isdir(waifu2x_settings['waifu2x_converter_path']): Avalon.error('Specified waifu2x-conver-cpp directory doesn\'t exist') Avalon.error('Please check the configuration file settings') raise FileNotFoundError(waifu2x_settings['waifu2x_converter_path']) # read FFmpeg configuration ffmpeg_settings = config['ffmpeg'] # load video2x settings video2x_cache_directory = config['video2x']['video2x_cache_directory'] image_format = config['video2x']['image_format'].lower() preserve_frames = config['video2x']['preserve_frames'] # create temp directories if they don't exist if not video2x_cache_directory: video2x_cache_directory = f'{tempfile.gettempdir()}\\video2x' if video2x_cache_directory and not os.path.isdir(video2x_cache_directory): if not os.path.isfile(video2x_cache_directory) and not os.path.islink(video2x_cache_directory): Avalon.warning(f'Specified cache directory {video2x_cache_directory} does not exist') if Avalon.ask('Create directory?', default=True, batch=args.batch): if os.mkdir(video2x_cache_directory) is None: Avalon.info(f'{video2x_cache_directory} created') else: Avalon.error(f'Unable to create {video2x_cache_directory}') Avalon.error('Aborting...') exit(1) else: Avalon.error('Specified cache directory is a file/link') Avalon.error('Unable to continue, exiting...') exit(1) # start execution try: # start timer begin_time = time.time() # if input specified is a single file if os.path.isfile(args.input): # upscale single video file Avalon.info(f'Upscaling single video file: {args.input}') # check for input output format mismatch if os.path.isdir(args.output): Avalon.error('Input and output path type mismatch') Avalon.error('Input is single file but output is directory') raise Exception('input output path type mismatch') if not re.search('.*\..*$', args.output): Avalon.error('No suffix found in output file path') Avalon.error('Suffix must be specified for FFmpeg') raise Exception('No suffix specified') upscaler = Upscaler(input_video=args.input, output_video=args.output, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings) # set optional options upscaler.waifu2x_driver = args.driver upscaler.scale_width = args.width upscaler.scale_height = args.height upscaler.scale_ratio = args.ratio upscaler.model_dir = args.model_dir upscaler.threads = args.threads upscaler.video2x_cache_directory = video2x_cache_directory upscaler.image_format = image_format upscaler.preserve_frames = preserve_frames # run upscaler upscaler.create_temp_directories() upscaler.run() upscaler.cleanup_temp_directories() # if input specified is a directory elif os.path.isdir(args.input): # upscale videos in a directory Avalon.info(f'Upscaling videos in directory: {args.input}') for input_video in [f for f in os.listdir(args.input) if os.path.isfile(os.path.join(args.input, f))]: output_video = f'{args.output}\\{input_video}' upscaler = Upscaler(input_video=os.path.join(args.input, input_video), output_video=output_video, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings) # set optional options upscaler.waifu2x_driver = args.driver upscaler.scale_width = args.width upscaler.scale_height = args.height upscaler.scale_ratio = args.ratio upscaler.model_dir = args.model_dir upscaler.threads = args.threads upscaler.video2x_cache_directory = video2x_cache_directory upscaler.image_format = image_format upscaler.preserve_frames = preserve_frames # run upscaler upscaler.create_temp_directories() upscaler.run() upscaler.cleanup_temp_directories() else: Avalon.error('Input path is neither a file nor a directory') raise FileNotFoundError(f'{args.input} is neither file nor directory') Avalon.info(f'Program completed, taking {round((time.time() - begin_time), 5)} seconds') except Exception: Avalon.error('An exception has occurred') traceback.print_exc() finally: # remove Video2X cache directory try: if not preserve_frames: shutil.rmtree(video2x_cache_directory) except FileNotFoundError: pass