broken the upscaler into descrete parts

This commit is contained in:
k4yt3x 2022-04-28 14:33:33 +00:00
parent 0a052a3a72
commit e01d24c164

View File

@ -19,189 +19,174 @@ along with this program. If not, see <https://www.gnu.org/licenses/>.
Name: Upscaler Name: Upscaler
Author: K4YT3X Author: K4YT3X
Date Created: May 27, 2021 Date Created: May 27, 2021
Last Modified: March 20, 2022 Last Modified: April 10, 2022
""" """
import math import math
import multiprocessing
import queue import queue
import signal
import time
from multiprocessing.managers import ListProxy
from multiprocessing.sharedctypes import Synchronized
from loguru import logger from PIL import Image
from PIL import Image, ImageChops, ImageStat
from realcugan_ncnn_vulkan_python import Realcugan from realcugan_ncnn_vulkan_python import Realcugan
from realsr_ncnn_vulkan_python import Realsr from realsr_ncnn_vulkan_python import Realsr
from srmd_ncnn_vulkan_python import Srmd from srmd_ncnn_vulkan_python import Srmd
from waifu2x_ncnn_vulkan_python import Waifu2x from waifu2x_ncnn_vulkan_python import Waifu2x
# fixed scaling ratios supported by the algorithms from .processor import Processor
# that only support certain fixed scale ratios
ALGORITHM_FIXED_SCALING_RATIOS = {
"waifu2x": [1, 2],
"srmd": [2, 3, 4],
"realsr": [4],
"realcugan": [1, 2, 3, 4],
}
ALGORITHM_CLASSES = {
"waifu2x": Waifu2x,
"srmd": Srmd,
"realsr": Realsr,
"realcugan": Realcugan,
}
class Upscaler(multiprocessing.Process): class Upscaler:
def __init__( # fixed scaling ratios supported by the algorithms
# that only support certain fixed scale ratios
ALGORITHM_FIXED_SCALING_RATIOS = {
"waifu2x": [1, 2],
"srmd": [2, 3, 4],
"realsr": [4],
"realcugan": [1, 2, 3, 4],
}
ALGORITHM_CLASSES = {
"waifu2x": Waifu2x,
"srmd": Srmd,
"realsr": Realsr,
"realcugan": Realcugan,
}
processor_objects = {}
@staticmethod
def _get_scaling_tasks(
input_width: int,
input_height: int,
output_width: int,
output_height: int,
algorithm: str,
) -> list:
"""
Get the required tasks for upscaling the image until it is larger than
or equal to the desired output dimensions. For example, SRMD only supports
2x, 3x, and 4x, so upsclaing an image from 320x240 to 3840x2160 will
require the SRMD to run 3x then 4x. In this case, this function will
return [3, 4].
:param input_width int: input image width
:param input_height int: input image height
:param output_width int: desired output image width
:param output_height int: desired output image size
:param algorithm str: upsclaing algorithm
:rtype list: the list of upsclaing tasks required
"""
# calculate required minimum scale ratio
output_scale = max(output_width / input_width, output_height / input_height)
# select the optimal algorithm scaling ratio to use
supported_scaling_ratios = sorted(
Upscaler.ALGORITHM_FIXED_SCALING_RATIOS[algorithm]
)
remaining_scaling_ratio = math.ceil(output_scale)
# if the scaling ratio is 1.0
# apply the smallest scaling ratio available
if remaining_scaling_ratio == 1:
return [supported_scaling_ratios[0]]
scaling_jobs = []
while remaining_scaling_ratio > 1:
for ratio in supported_scaling_ratios:
if ratio >= remaining_scaling_ratio:
scaling_jobs.append(ratio)
remaining_scaling_ratio /= ratio
break
else:
found = False
for i in supported_scaling_ratios:
for j in supported_scaling_ratios:
if i * j >= remaining_scaling_ratio:
scaling_jobs.extend([i, j])
remaining_scaling_ratio /= i * j
found = True
break
if found is True:
break
if found is False:
scaling_jobs.append(supported_scaling_ratios[-1])
remaining_scaling_ratio /= supported_scaling_ratios[-1]
return scaling_jobs
def upscale_image(
self, self,
processing_queue: multiprocessing.Queue, image: Image.Image,
processed_frames: ListProxy, output_width: int,
pause: Synchronized, output_height: int,
) -> None: algorithm: str,
multiprocessing.Process.__init__(self) noise: int,
self.running = False ) -> Image.Image:
self.processing_queue = processing_queue """
self.processed_frames = processed_frames upscale an image
self.pause = pause
signal.signal(signal.SIGTERM, self._stop) :param image Image.Image: the image to upscale
:param output_width int: the desired output width
:param output_height int: the desired output height
:param algorithm str: the algorithm to use
:param noise int: the noise level (available only for some algorithms)
:rtype Image.Image: the upscaled image
"""
width, height = image.size
def run(self) -> None: for task in self._get_scaling_tasks(
self.running = True width, height, output_width, output_height, algorithm
logger.opt(colors=True).info( ):
f"Upscaler process <blue>{self.name}</blue> initiating"
)
processor_objects = {}
while self.running is True:
try:
# pause if pause flag is set
if self.pause.value is True:
time.sleep(0.1)
continue
try: # select a processor object with the required settings
# get new job from queue # create a new object if none are available
( processor_object = self.processor_objects.get((algorithm, task))
frame_index, if processor_object is None:
(image0, image1), processor_object = self.ALGORITHM_CLASSES[algorithm](
( noise=noise, scale=task
output_width, )
output_height, self.processor_objects[(algorithm, task)] = processor_object
noise,
difference_threshold,
algorithm,
),
) = self.processing_queue.get(False)
# destructure settings # process the image with the selected algorithm
except queue.Empty: image = processor_object.process(image)
time.sleep(0.1)
continue
difference_ratio = 0 # downscale the image to the desired output size and
if image0 is not None: # save the image to disk
difference = ImageChops.difference(image0, image1) return image.resize((output_width, output_height), Image.Resampling.LANCZOS)
difference_stat = ImageStat.Stat(difference)
difference_ratio = (
sum(difference_stat.mean)
/ (len(difference_stat.mean) * 255)
* 100
)
# if the difference is lower than threshold
# skip this frame
if difference_ratio < difference_threshold:
# make sure the previous frame has been processed class UpscalerProcessor(Processor, Upscaler):
if frame_index > 0: def process(self) -> None:
while self.processed_frames[frame_index - 1] is None:
time.sleep(0.1)
# make the current image the same as the previous result task = self.tasks_queue.get()
self.processed_frames[frame_index] = self.processed_frames[ while task is not None:
frame_index - 1
]
# if the difference is greater than threshold # unpack the task's values
# process this frame (
else: frame_index,
width, height = image1.size previous_frame,
current_frame,
processing_settings,
) = task
# calculate required minimum scale ratio # calculate the %diff between the current frame and the previous frame
output_scale = max(output_width / width, output_height / height) difference_ratio = 0
if previous_frame is not None:
difference_ratio = self.get_image_diff(previous_frame, current_frame)
# select the optimal algorithm scaling ratio to use # if the difference is lower than threshold, skip this frame
supported_scaling_ratios = sorted( if difference_ratio < processing_settings["difference_threshold"]:
ALGORITHM_FIXED_SCALING_RATIOS[algorithm]
)
remaining_scaling_ratio = math.ceil(output_scale) # make the current image the same as the previous result
scaling_jobs = [] self.processed_frames[frame_index] = True
# if the scaling ratio is 1.0 # if the difference is greater than threshold
# apply the smallest scaling ratio available # process this frame
if remaining_scaling_ratio == 1: else:
scaling_jobs.append(supported_scaling_ratios[0]) self.processed_frames[frame_index] = self.upscale_image(
else: **processing_settings
while remaining_scaling_ratio > 1: )
for ratio in supported_scaling_ratios:
if ratio >= remaining_scaling_ratio:
scaling_jobs.append(ratio)
remaining_scaling_ratio /= ratio
break
else: self.tasks_queue.task_done()
found = False task = self.tasks_queue.get()
for i in supported_scaling_ratios:
for j in supported_scaling_ratios:
if i * j >= remaining_scaling_ratio:
scaling_jobs.extend([i, j])
remaining_scaling_ratio /= i * j
found = True
break
if found is True:
break
if found is False:
scaling_jobs.append(supported_scaling_ratios[-1])
remaining_scaling_ratio /= supported_scaling_ratios[
-1
]
for job in scaling_jobs:
# select a processor object with the required settings
# create a new object if none are available
processor_object = processor_objects.get((algorithm, job))
if processor_object is None:
processor_object = ALGORITHM_CLASSES[algorithm](
noise=noise, scale=job
)
processor_objects[(algorithm, job)] = processor_object
# process the image with the selected algorithm
image1 = processor_object.process(image1)
# downscale the image to the desired output size and
# save the image to disk
image1 = image1.resize((output_width, output_height), Image.LANCZOS)
self.processed_frames[frame_index] = image1
# send exceptions into the client connection pipe
except (SystemExit, KeyboardInterrupt):
break
except Exception as error:
logger.exception(error)
break
logger.opt(colors=True).info(
f"Upscaler process <blue>{self.name}</blue> terminating"
)
return super().run()
def _stop(self, _signal_number, _frame) -> None:
self.running = False