broken the upscaler into descrete parts

This commit is contained in:
k4yt3x 2022-04-28 14:33:33 +00:00
parent 0a052a3a72
commit e01d24c164

View File

@ -19,24 +19,22 @@ along with this program. If not, see <https://www.gnu.org/licenses/>.
Name: Upscaler Name: Upscaler
Author: K4YT3X Author: K4YT3X
Date Created: May 27, 2021 Date Created: May 27, 2021
Last Modified: March 20, 2022 Last Modified: April 10, 2022
""" """
import math import math
import multiprocessing
import queue import queue
import signal
import time
from multiprocessing.managers import ListProxy
from multiprocessing.sharedctypes import Synchronized
from loguru import logger from PIL import Image
from PIL import Image, ImageChops, ImageStat
from realcugan_ncnn_vulkan_python import Realcugan from realcugan_ncnn_vulkan_python import Realcugan
from realsr_ncnn_vulkan_python import Realsr from realsr_ncnn_vulkan_python import Realsr
from srmd_ncnn_vulkan_python import Srmd from srmd_ncnn_vulkan_python import Srmd
from waifu2x_ncnn_vulkan_python import Waifu2x from waifu2x_ncnn_vulkan_python import Waifu2x
from .processor import Processor
class Upscaler:
# fixed scaling ratios supported by the algorithms # fixed scaling ratios supported by the algorithms
# that only support certain fixed scale ratios # that only support certain fixed scale ratios
ALGORITHM_FIXED_SCALING_RATIOS = { ALGORITHM_FIXED_SCALING_RATIOS = {
@ -53,99 +51,46 @@ ALGORITHM_CLASSES = {
"realcugan": Realcugan, "realcugan": Realcugan,
} }
class Upscaler(multiprocessing.Process):
def __init__(
self,
processing_queue: multiprocessing.Queue,
processed_frames: ListProxy,
pause: Synchronized,
) -> None:
multiprocessing.Process.__init__(self)
self.running = False
self.processing_queue = processing_queue
self.processed_frames = processed_frames
self.pause = pause
signal.signal(signal.SIGTERM, self._stop)
def run(self) -> None:
self.running = True
logger.opt(colors=True).info(
f"Upscaler process <blue>{self.name}</blue> initiating"
)
processor_objects = {} processor_objects = {}
while self.running is True:
try:
# pause if pause flag is set
if self.pause.value is True:
time.sleep(0.1)
continue
try: @staticmethod
# get new job from queue def _get_scaling_tasks(
( input_width: int,
frame_index, input_height: int,
(image0, image1), output_width: int,
( output_height: int,
output_width, algorithm: str,
output_height, ) -> list:
noise, """
difference_threshold, Get the required tasks for upscaling the image until it is larger than
algorithm, or equal to the desired output dimensions. For example, SRMD only supports
), 2x, 3x, and 4x, so upsclaing an image from 320x240 to 3840x2160 will
) = self.processing_queue.get(False) require the SRMD to run 3x then 4x. In this case, this function will
return [3, 4].
# destructure settings
except queue.Empty:
time.sleep(0.1)
continue
difference_ratio = 0
if image0 is not None:
difference = ImageChops.difference(image0, image1)
difference_stat = ImageStat.Stat(difference)
difference_ratio = (
sum(difference_stat.mean)
/ (len(difference_stat.mean) * 255)
* 100
)
# if the difference is lower than threshold
# skip this frame
if difference_ratio < difference_threshold:
# make sure the previous frame has been processed
if frame_index > 0:
while self.processed_frames[frame_index - 1] is None:
time.sleep(0.1)
# make the current image the same as the previous result
self.processed_frames[frame_index] = self.processed_frames[
frame_index - 1
]
# if the difference is greater than threshold
# process this frame
else:
width, height = image1.size
:param input_width int: input image width
:param input_height int: input image height
:param output_width int: desired output image width
:param output_height int: desired output image size
:param algorithm str: upsclaing algorithm
:rtype list: the list of upsclaing tasks required
"""
# calculate required minimum scale ratio # calculate required minimum scale ratio
output_scale = max(output_width / width, output_height / height) output_scale = max(output_width / input_width, output_height / input_height)
# select the optimal algorithm scaling ratio to use # select the optimal algorithm scaling ratio to use
supported_scaling_ratios = sorted( supported_scaling_ratios = sorted(
ALGORITHM_FIXED_SCALING_RATIOS[algorithm] Upscaler.ALGORITHM_FIXED_SCALING_RATIOS[algorithm]
) )
remaining_scaling_ratio = math.ceil(output_scale) remaining_scaling_ratio = math.ceil(output_scale)
scaling_jobs = []
# if the scaling ratio is 1.0 # if the scaling ratio is 1.0
# apply the smallest scaling ratio available # apply the smallest scaling ratio available
if remaining_scaling_ratio == 1: if remaining_scaling_ratio == 1:
scaling_jobs.append(supported_scaling_ratios[0]) return [supported_scaling_ratios[0]]
else:
scaling_jobs = []
while remaining_scaling_ratio > 1: while remaining_scaling_ratio > 1:
for ratio in supported_scaling_ratios: for ratio in supported_scaling_ratios:
if ratio >= remaining_scaling_ratio: if ratio >= remaining_scaling_ratio:
@ -167,41 +112,81 @@ class Upscaler(multiprocessing.Process):
if found is False: if found is False:
scaling_jobs.append(supported_scaling_ratios[-1]) scaling_jobs.append(supported_scaling_ratios[-1])
remaining_scaling_ratio /= supported_scaling_ratios[ remaining_scaling_ratio /= supported_scaling_ratios[-1]
-1 return scaling_jobs
]
for job in scaling_jobs: def upscale_image(
self,
image: Image.Image,
output_width: int,
output_height: int,
algorithm: str,
noise: int,
) -> Image.Image:
"""
upscale an image
:param image Image.Image: the image to upscale
:param output_width int: the desired output width
:param output_height int: the desired output height
:param algorithm str: the algorithm to use
:param noise int: the noise level (available only for some algorithms)
:rtype Image.Image: the upscaled image
"""
width, height = image.size
for task in self._get_scaling_tasks(
width, height, output_width, output_height, algorithm
):
# select a processor object with the required settings # select a processor object with the required settings
# create a new object if none are available # create a new object if none are available
processor_object = processor_objects.get((algorithm, job)) processor_object = self.processor_objects.get((algorithm, task))
if processor_object is None: if processor_object is None:
processor_object = ALGORITHM_CLASSES[algorithm]( processor_object = self.ALGORITHM_CLASSES[algorithm](
noise=noise, scale=job noise=noise, scale=task
) )
processor_objects[(algorithm, job)] = processor_object self.processor_objects[(algorithm, task)] = processor_object
# process the image with the selected algorithm # process the image with the selected algorithm
image1 = processor_object.process(image1) image = processor_object.process(image)
# downscale the image to the desired output size and # downscale the image to the desired output size and
# save the image to disk # save the image to disk
image1 = image1.resize((output_width, output_height), Image.LANCZOS) return image.resize((output_width, output_height), Image.Resampling.LANCZOS)
self.processed_frames[frame_index] = image1
# send exceptions into the client connection pipe
except (SystemExit, KeyboardInterrupt):
break
except Exception as error: class UpscalerProcessor(Processor, Upscaler):
logger.exception(error) def process(self) -> None:
break
logger.opt(colors=True).info( task = self.tasks_queue.get()
f"Upscaler process <blue>{self.name}</blue> terminating" while task is not None:
# unpack the task's values
(
frame_index,
previous_frame,
current_frame,
processing_settings,
) = task
# calculate the %diff between the current frame and the previous frame
difference_ratio = 0
if previous_frame is not None:
difference_ratio = self.get_image_diff(previous_frame, current_frame)
# if the difference is lower than threshold, skip this frame
if difference_ratio < processing_settings["difference_threshold"]:
# make the current image the same as the previous result
self.processed_frames[frame_index] = True
# if the difference is greater than threshold
# process this frame
else:
self.processed_frames[frame_index] = self.upscale_image(
**processing_settings
) )
return super().run()
def _stop(self, _signal_number, _frame) -> None: self.tasks_queue.task_done()
self.running = False task = self.tasks_queue.get()