video2x/bin/video2x.py

254 lines
11 KiB
Python
Raw Normal View History

2018-12-11 20:52:48 +00:00
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
__ __ _ _ ___ __ __
\ \ / / (_) | | |__ \ \ \ / /
\ \ / / _ __| | ___ ___ ) | \ V /
\ \/ / | | / _` | / _ \ / _ \ / / > <
\ / | | | (_| | | __/ | (_) | / /_ / . \
\/ |_| \__,_| \___| \___/ |____| /_/ \_\
Name: Video2X Controller
2018-12-11 20:52:48 +00:00
Author: K4YT3X
Date Created: Feb 24, 2018
Last Modified: March 9, 2019
2018-12-11 20:52:48 +00:00
Licensed under the GNU General Public License Version 3 (GNU GPL v3),
available at: https://www.gnu.org/licenses/gpl-3.0.txt
2019-01-09 16:42:29 +00:00
(C) 2018-2019 K4YT3X
2018-12-11 20:52:48 +00:00
Description: Video2X is an automation software based on
waifu2x image enlarging engine. It extracts frames from a
video, enlarge it by a number of times without losing any
details or quality, keeping lines smooth and edges sharp.
"""
from avalon_framework import Avalon
from upscaler import Upscaler
from upscaler import MODELS_AVAILABLE
import GPUtil
import argparse
2018-12-11 20:52:48 +00:00
import json
import os
import psutil
import shutil
import tempfile
2018-12-11 20:52:48 +00:00
import time
import traceback
2019-03-12 16:03:51 +00:00
VERSION = '2.6.1'
2018-12-11 20:52:48 +00:00
# Each thread might take up to 2.5 GB during initialization.
# (system memory, not to be confused with GPU memory)
SYS_MEM_PER_THREAD = 2.5
GPU_MEM_PER_THREAD = 3.5
2018-12-11 20:52:48 +00:00
def process_arguments():
"""Processes CLI arguments
This function parses all arguments
This allows users to customize options
for the output video.
"""
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
2018-12-11 20:52:48 +00:00
# Video options
basic_options = parser.add_argument_group('Basic Options')
basic_options.add_argument('-i', '--input', help='Specify source video file/directory', action='store', default=False, required=True)
basic_options.add_argument('-o', '--output', help='Specify output video file/directory', action='store', default=False, required=True)
basic_options.add_argument('-m', '--method', help='Specify upscaling method', action='store', default='gpu', choices=['cpu', 'gpu', 'cudnn'], required=True)
2019-02-16 21:48:39 +00:00
basic_options.add_argument('-d', '--driver', help='Waifu2x driver', action='store', default='waifu2x_caffe', choices=['waifu2x_caffe', 'waifu2x_converter'])
basic_options.add_argument('-y', '--model_type', help='Specify model to use', action='store', default='models/cunet', choices=MODELS_AVAILABLE)
2018-12-11 20:52:48 +00:00
basic_options.add_argument('-t', '--threads', help='Specify number of threads to use for upscaling', action='store', type=int, default=5)
basic_options.add_argument('-c', '--config', help='Manually specify config file', action='store', default='{}\\video2x.json'.format(os.path.dirname(os.path.abspath(__file__))))
2019-03-12 16:03:51 +00:00
basic_options.add_argument('-b', '--batch', help='Enable batch mode (select all default values to questions)', action='store_true', default=False)
2018-12-11 20:52:48 +00:00
# Scaling options
# scaling_options = parser.add_argument_group('Scaling Options', required=True) # TODO: (width & height) || (factor)
scaling_options = parser.add_argument_group('Scaling Options') # TODO: (width & height) || (factor)
2018-12-11 20:52:48 +00:00
scaling_options.add_argument('--width', help='Output video width', action='store', type=int, default=False)
scaling_options.add_argument('--height', help='Output video height', action='store', type=int, default=False)
2019-02-08 21:49:23 +00:00
scaling_options.add_argument('-r', '--ratio', help='Scaling ratio', action='store', type=int, default=False)
2018-12-11 20:52:48 +00:00
# Parse arguments
return parser.parse_args()
def print_logo():
print('__ __ _ _ ___ __ __')
print('\\ \\ / / (_) | | |__ \\ \\ \\ / /')
print(' \\ \\ / / _ __| | ___ ___ ) | \\ V /')
print(' \\ \\/ / | | / _` | / _ \\ / _ \\ / / > <')
print(' \\ / | | | (_| | | __/ | (_) | / /_ / . \\')
print(' \\/ |_| \\__,_| \\___| \\___/ |____| /_/ \\_\\')
print('\n Video2X Video Enlarger')
spaces = ((44 - len("Version {}".format(VERSION))) // 2) * " "
2018-12-11 20:52:48 +00:00
print('{}\n{} Version {}\n{}'.format(Avalon.FM.BD, spaces, VERSION, Avalon.FM.RST))
def check_memory():
""" Check usable system memory
Warn the user if insufficient memory is available for
the number of threads that the user have chosen.
"""
memory_status = []
# Get system available memory
system_memory_available = psutil.virtual_memory().available / (1024 ** 3)
memory_status.append(('system', system_memory_available))
# Check if Nvidia-smi is available
# GPUtil requires nvidia-smi.exe to interact with GPU
if args.method == 'gpu' or args.method == 'cudnn':
if not os.path.isfile('C:\\Program Files\\NVIDIA Corporation\\NVSMI\\nvidia-smi.exe'):
# Nvidia System Management Interface not available
Avalon.warning('Nvidia-smi not available, skipping available memory check')
2019-03-12 14:40:29 +00:00
Avalon.warning('If you experience error \"cudaSuccess out of memory\", try reducing number of threads you\'re using')
else:
try:
# "0" is GPU ID. Both waifu2x drivers use the first GPU available, therefore only 0 makes sense
gpu_memory_available = (GPUtil.getGPUs()[0].memoryTotal - GPUtil.getGPUs()[0].memoryUsed) / 1024
memory_status.append(('GPU', gpu_memory_available))
except ValueError:
pass
# Go though each checkable memory type and check availability
for memory_type, memory_available in memory_status:
if memory_type == 'system':
mem_per_thread = SYS_MEM_PER_THREAD
else:
mem_per_thread = GPU_MEM_PER_THREAD
# If user doesn't even have enough memory to run even one thread
if memory_available < mem_per_thread:
Avalon.warning('You might have insufficient amount of {} memory available to run this program ({} GB)'.format(memory_type, memory_available))
Avalon.warning('Proceed with caution')
if args.threads > 1:
2019-03-12 16:03:51 +00:00
if Avalon.ask('Reduce number of threads to avoid crashing?', default=True, batch=args.batch):
args.threads = 1
# If memory available is less than needed, warn the user
elif memory_available < (mem_per_thread * args.threads):
Avalon.warning('Each waifu2x-caffe thread will require up to 2.5 GB of system memory')
Avalon.warning('You demanded {} threads to be created, but you only have {} GB {} memory available'.format(args.threads, round(memory_available, 4), memory_type))
Avalon.warning('{} GB of {} memory is recommended for {} threads'.format(mem_per_thread * args.threads, memory_type, args.threads))
Avalon.warning('With your current amount of {} memory available, {} threads is recommended'.format(memory_type, int(memory_available // mem_per_thread)))
# Ask the user if he / she wants to change to the recommended
# number of threads
2019-03-12 16:03:51 +00:00
if Avalon.ask('Change to the recommended value?', default=True, batch=args.batch):
args.threads = int(memory_available // mem_per_thread)
else:
Avalon.warning('Proceed with caution')
2018-12-11 20:52:48 +00:00
def read_config(config_file):
""" Reads configuration file
Returns a dictionary read by JSON.
2018-12-11 20:52:48 +00:00
"""
with open(config_file, 'r') as raw_config:
config = json.load(raw_config)
return config
# /////////////////// Execution /////////////////// #
# This is not a library
if __name__ != '__main__':
Avalon.error('This file cannot be imported')
raise ImportError('{} cannot be imported'.format(__file__))
2018-12-11 20:52:48 +00:00
print_logo()
# Process CLI arguments
2018-12-11 20:52:48 +00:00
args = process_arguments()
2019-02-08 21:49:23 +00:00
# Arguments sanity check
if args.driver == 'waifu2x_converter' and args.width and args.height:
Avalon.error('Waifu2x Converter CPP accepts only scaling ratio')
exit(1)
if (args.width or args.height) and args.ratio:
Avalon.error('You can only specify either scaling ratio or output width and height')
exit(1)
if (args.width and not args.height) or (not args.width and args.height):
Avalon.error('You must specify both width and height')
exit(1)
# Check available memory
check_memory()
2018-12-11 20:52:48 +00:00
# Read configurations from JSON
config = read_config(args.config)
# load waifu2x configuration
if args.driver == 'waifu2x_caffe':
waifu2x_settings = config['waifu2x_caffe']
elif args.driver == 'waifu2x_converter':
waifu2x_settings = config['waifu2x_converter']
# read FFMPEG configuration
ffmpeg_settings = config['ffmpeg']
# load video2x settings
video2x_cache_folder = config['video2x']['video2x_cache_folder']
preserve_frames = config['video2x']['preserve_frames']
# Create temp directories if they don't exist
if not video2x_cache_folder:
video2x_cache_folder = '{}\\video2x'.format(tempfile.gettempdir())
if video2x_cache_folder and not os.path.isdir(video2x_cache_folder):
if not os.path.isfile(video2x_cache_folder) and not os.path.islink(video2x_cache_folder):
Avalon.warning('Specified cache folder/directory {} does not exist'.format(video2x_cache_folder))
2019-03-12 16:03:51 +00:00
if Avalon.ask('Create folder/directory?', default=True, batch=args.batch):
if os.mkdir(video2x_cache_folder) is None:
Avalon.info('{} created'.format(video2x_cache_folder))
else:
Avalon.error('Unable to create {}'.format(video2x_cache_folder))
Avalon.error('Aborting...')
exit(1)
else:
Avalon.error('Specified cache folder/directory is a file/link')
Avalon.error('Unable to continue, exiting...')
exit(1)
2018-12-11 20:52:48 +00:00
# Start execution
try:
# Start timer
begin_time = time.time()
if os.path.isfile(args.input):
""" Upscale single video file """
Avalon.info('Upscaling single video file: {}'.format(args.input))
upscaler = Upscaler(input_video=args.input, output_video=args.output, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings, waifu2x_driver=args.driver, scale_width=args.width, scale_height=args.height, scale_ratio=args.ratio, model_type=args.model_type, threads=args.threads, video2x_cache_folder=video2x_cache_folder)
upscaler.run()
upscaler.cleanup()
elif os.path.isdir(args.input):
""" Upscale videos in a folder/directory """
Avalon.info('Upscaling videos in folder/directory: {}'.format(args.input))
for input_video in [f for f in os.listdir(args.input) if os.path.isfile(os.path.join(args.input, f))]:
output_video = '{}\\{}'.format(args.output, input_video)
upscaler = Upscaler(input_video=os.path.join(args.input, input_video), output_video=output_video, method=args.method, waifu2x_settings=waifu2x_settings, ffmpeg_settings=ffmpeg_settings, waifu2x_driver=args.driver, scale_width=args.width, scale_height=args.height, scale_ratio=args.ratio, model_type=args.model_type, threads=args.threads, video2x_cache_folder=video2x_cache_folder)
upscaler.run()
upscaler.cleanup()
else:
Avalon.error('Input path is neither a file nor a folder/directory')
raise FileNotFoundError('{} is neither file nor folder/directory'.format(args.input))
2018-12-11 20:52:48 +00:00
Avalon.info('Program completed, taking {} seconds'.format(round((time.time() - begin_time), 5)))
except Exception:
Avalon.error('An exception has occurred')
2018-12-11 20:52:48 +00:00
traceback.print_exc()
finally:
# Remove Video2X Cache folder
try:
if not preserve_frames:
shutil.rmtree(video2x_cache_folder)
except FileNotFoundError:
pass