LivePortrait/src/modules/convnextv2.py
2024-07-04 04:32:47 +08:00

150 lines
5.0 KiB
Python

# coding: utf-8
"""
This moudle is adapted to the ConvNeXtV2 version for the extraction of implicit keypoints, poses, and expression deformation.
"""
import torch
import torch.nn as nn
# from timm.models.layers import trunc_normal_, DropPath
from .util import LayerNorm, DropPath, trunc_normal_, GRN
__all__ = ['convnextv2_tiny']
class Block(nn.Module):
""" ConvNeXtV2 Block.
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
"""
def __init__(self, dim, drop_path=0.):
super().__init__()
self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
self.norm = LayerNorm(dim, eps=1e-6)
self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
self.act = nn.GELU()
self.grn = GRN(4 * dim)
self.pwconv2 = nn.Linear(4 * dim, dim)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
input = x
x = self.dwconv(x)
x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
x = self.norm(x)
x = self.pwconv1(x)
x = self.act(x)
x = self.grn(x)
x = self.pwconv2(x)
x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
x = input + self.drop_path(x)
return x
class ConvNeXtV2(nn.Module):
""" ConvNeXt V2
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
drop_path_rate (float): Stochastic depth rate. Default: 0.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
"""
def __init__(
self,
in_chans=3,
depths=[3, 3, 9, 3],
dims=[96, 192, 384, 768],
drop_path_rate=0.,
**kwargs
):
super().__init__()
self.depths = depths
self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
)
self.downsample_layers.append(stem)
for i in range(3):
downsample_layer = nn.Sequential(
LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
)
self.downsample_layers.append(downsample_layer)
self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
cur = 0
for i in range(4):
stage = nn.Sequential(
*[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
)
self.stages.append(stage)
cur += depths[i]
self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
# NOTE: the output semantic items
num_bins = kwargs.get('num_bins', 66)
num_kp = kwargs.get('num_kp', 24) # the number of implicit keypoints
self.fc_kp = nn.Linear(dims[-1], 3 * num_kp) # implicit keypoints
# print('dims[-1]: ', dims[-1])
self.fc_scale = nn.Linear(dims[-1], 1) # scale
self.fc_pitch = nn.Linear(dims[-1], num_bins) # pitch bins
self.fc_yaw = nn.Linear(dims[-1], num_bins) # yaw bins
self.fc_roll = nn.Linear(dims[-1], num_bins) # roll bins
self.fc_t = nn.Linear(dims[-1], 3) # translation
self.fc_exp = nn.Linear(dims[-1], 3 * num_kp) # expression / delta
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
nn.init.constant_(m.bias, 0)
def forward_features(self, x):
for i in range(4):
x = self.downsample_layers[i](x)
x = self.stages[i](x)
return self.norm(x.mean([-2, -1])) # global average pooling, (N, C, H, W) -> (N, C)
def forward(self, x):
x = self.forward_features(x)
# implicit keypoints
kp = self.fc_kp(x)
# pose and expression deformation
pitch = self.fc_pitch(x)
yaw = self.fc_yaw(x)
roll = self.fc_roll(x)
t = self.fc_t(x)
exp = self.fc_exp(x)
scale = self.fc_scale(x)
ret_dct = {
'pitch': pitch,
'yaw': yaw,
'roll': roll,
't': t,
'exp': exp,
'scale': scale,
'kp': kp, # canonical keypoint
}
return ret_dct
def convnextv2_tiny(**kwargs):
model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
return model