LivePortrait/predict.py
2024-07-08 08:24:19 +02:00

43 lines
1.7 KiB
Python

from cog import BasePredictor, Input, Path, File
from src.config.argument_config import ArgumentConfig
from src.config.inference_config import InferenceConfig
from src.config.crop_config import CropConfig
from src.live_portrait_pipeline import LivePortraitPipeline
import requests
class Predictor(BasePredictor):
def setup(self) -> None:
"""Load the model into memory to make running multiple predictions efficient"""
self.live_portrait_pipeline = LivePortraitPipeline(
inference_cfg=InferenceConfig(),
crop_cfg=CropConfig()
)
def predict(
self,
input_image_path: Path = Input(description="Portrait image"),
input_video_path: Path = Input(description="Driving video"),
flag_relative_input: bool = Input(description="relative motion", default=True),
flag_do_crop_input: bool = Input(description="We recommend checking the do crop option when facial areas occupy a relatively small portion of your image.", default=True),
flag_pasteback: bool = Input(description="paste-back", default=True),
) -> Path:
"""Run a single prediction on the model"""
user_args = ArgumentConfig(
flag_relative=flag_relative_input,
flag_do_crop=flag_do_crop_input,
flag_pasteback=flag_pasteback,
source_image=input_image_path,
driving_info=str(input_video_path),
output_dir="/tmp/"
)
self.live_portrait_pipeline.cropper.update_config(user_args.__dict__)
self.live_portrait_pipeline.live_portrait_wrapper.update_config(user_args.__dict__)
video_path, _ = self.live_portrait_pipeline.execute(
user_args
)
return Path(video_path)