🔥 For more results, visit our homepage 🔥
Or, you can change the input by specifying the `-s` and `-d` arguments: ```bash # source input is an image python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d0.mp4 # source input is a video ✨ python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d0.mp4 # more options to see python inference.py -h ``` #### Fast hands-on (animals) 🐱🐶 Animals mode is ONLY tested on Linux with NVIDIA GPU. You need to build an OP named `MultiScaleDeformableAttention` first, which is used by [X-Pose](https://github.com/IDEA-Research/X-Pose), a general keypoint detection framework. ```bash cd src/utils/dependencies/XPose/models/UniPose/ops python setup.py build install cd - # equal to cd ../../../../../../../ ``` Then ```bash python inference_animals.py -s assets/examples/source/s39.jpg -d assets/examples/driving/wink.pkl --driving_multiplier 1.75 --no_flag_stitching ``` If the script runs successfully, you will get an output mp4 file named `animations/s39--wink_concat.mp4`.
#### Driving video auto-cropping 📢📢📢 > [!IMPORTANT] > To use your own driving video, we **recommend**: ⬇️ > - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`. > - Focus on the head area, similar to the example videos. > - Minimize shoulder movement. > - Make sure the first frame of driving video is a frontal face with **neutral expression**. Below is a auto-cropping case by `--flag_crop_driving_video`: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d13.mp4 --flag_crop_driving_video ``` If you find the results of auto-cropping is not well, you can modify the `--scale_crop_driving_video`, `--vy_ratio_crop_driving_video` options to adjust the scale and offset, or do it manually. #### Motion template making You can also use the auto-generated motion template files ending with `.pkl` to speed up inference, and **protect privacy**, such as: ```bash python inference.py -s assets/examples/source/s9.jpg -d assets/examples/driving/d5.pkl # portrait animation python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving/d5.pkl # portrait video editing ``` ### 4. Gradio interface 🤗 We also provide a Gradio interface for a better experience, just run by: ```bash # For Linux and Windows users (and macOS with Intel??) python app.py # humans mode # For macOS with Apple Silicon users, Intel not supported, this maybe 20x slower than RTX 4090 PYTORCH_ENABLE_MPS_FALLBACK=1 python app.py # humans mode ``` We also provide a Gradio interface of animals mode, which is only tested on Linux with NVIDIA GPU: ```bash python app_animals.py # animals mode 🐱🐶 ``` You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs! 🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions. ```bash # enable torch.compile for faster inference python app.py --flag_do_torch_compile ``` **Note**: This method is not supported on Windows and macOS. **Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗** ### 5. Inference speed evaluation 🚀🚀🚀 We have also provided a script to evaluate the inference speed of each module: ```bash # For NVIDIA GPU python speed.py ``` The results are [**here**](./assets/docs/speed.md). ## Community Resources 🤗 Discover the invaluable resources contributed by our community to enhance your LivePortrait experience: - [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) by [@kijai](https://github.com/kijai) - [comfyui-liveportrait](https://github.com/shadowcz007/comfyui-liveportrait) by [@shadowcz007](https://github.com/shadowcz007) - [LivePortrait In ComfyUI](https://www.youtube.com/watch?v=aFcS31OWMjE) by [@Benji](https://www.youtube.com/@TheFutureThinker) - [LivePortrait hands-on tutorial](https://www.youtube.com/watch?v=uyjSTAOY7yI) by [@AI Search](https://www.youtube.com/@theAIsearch) - [ComfyUI tutorial](https://www.youtube.com/watch?v=8-IcDDmiUMM) by [@Sebastian Kamph](https://www.youtube.com/@sebastiankamph) - [Replicate Playground](https://replicate.com/fofr/live-portrait) and [cog-comfyui](https://github.com/fofr/cog-comfyui) by [@fofr](https://github.com/fofr) And many more amazing contributions from our community! ## Acknowledgements 💐 We would like to thank the contributors of [FOMM](https://github.com/AliaksandrSiarohin/first-order-model), [Open Facevid2vid](https://github.com/zhanglonghao1992/One-Shot_Free-View_Neural_Talking_Head_Synthesis), [SPADE](https://github.com/NVlabs/SPADE), [InsightFace](https://github.com/deepinsight/insightface) repositories, for their open research and contributions. ## Citation 💖 If you find LivePortrait useful for your research, welcome to 🌟 this repo and cite our work using the following BibTeX: ```bibtex @article{guo2024liveportrait, title = {LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control}, author = {Guo, Jianzhu and Zhang, Dingyun and Liu, Xiaoqiang and Zhong, Zhizhou and Zhang, Yuan and Wan, Pengfei and Zhang, Di}, journal = {arXiv preprint arXiv:2407.03168}, year = {2024} } ``` ## Contact 📧 [**Jianzhu Guo (郭建珠)**](https://guojianzhu.com); **guojianzhu1994@gmail.com**