# coding: utf-8 """ The entrance of the gradio for human """ import os import tyro import subprocess import gradio as gr import os.path as osp from src.utils.helper import load_description from src.gradio_pipeline import GradioPipeline from src.config.crop_config import CropConfig from src.config.argument_config import ArgumentConfig from src.config.inference_config import InferenceConfig def partial_fields(target_class, kwargs): return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) def fast_check_ffmpeg(): try: subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True) return True except: return False # set tyro theme tyro.extras.set_accent_color("bright_cyan") args = tyro.cli(ArgumentConfig) ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg") if osp.exists(ffmpeg_dir): os.environ["PATH"] += (os.pathsep + ffmpeg_dir) if not fast_check_ffmpeg(): raise ImportError( "FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html" ) # specify configs for inference inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig # global_tab_selection = None gradio_pipeline = GradioPipeline( inference_cfg=inference_cfg, crop_cfg=crop_cfg, args=args ) if args.gradio_temp_dir not in (None, ''): os.environ["GRADIO_TEMP_DIR"] = args.gradio_temp_dir os.makedirs(args.gradio_temp_dir, exist_ok=True) def gpu_wrapped_execute_video(*args, **kwargs): return gradio_pipeline.execute_video(*args, **kwargs) def gpu_wrapped_execute_image_retargeting(*args, **kwargs): return gradio_pipeline.execute_image_retargeting(*args, **kwargs) def gpu_wrapped_execute_video_retargeting(*args, **kwargs): return gradio_pipeline.execute_video_retargeting(*args, **kwargs) def reset_sliders(*args, **kwargs): return 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 2.5, True, True # assets title_md = "assets/gradio/gradio_title.md" example_portrait_dir = "assets/examples/source" example_video_dir = "assets/examples/driving" data_examples_i2v = [ [osp.join(example_portrait_dir, "s9.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False], [osp.join(example_portrait_dir, "s6.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False], [osp.join(example_portrait_dir, "s10.jpg"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False], [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False], [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False], [osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d13.mp4"), True, True, True, True], ] data_examples_v2v = [ [osp.join(example_portrait_dir, "s13.mp4"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False, 3e-7], # [osp.join(example_portrait_dir, "s14.mp4"), osp.join(example_video_dir, "d18.mp4"), True, True, True, False, False, 3e-7], # [osp.join(example_portrait_dir, "s15.mp4"), osp.join(example_video_dir, "d19.mp4"), True, True, True, False, False, 3e-7], [osp.join(example_portrait_dir, "s18.mp4"), osp.join(example_video_dir, "d6.mp4"), True, True, True, False, 3e-7], # [osp.join(example_portrait_dir, "s19.mp4"), osp.join(example_video_dir, "d6.mp4"), True, True, True, False, False, 3e-7], [osp.join(example_portrait_dir, "s20.mp4"), osp.join(example_video_dir, "d0.mp4"), True, True, True, False, 3e-7], ] #################### interface logic #################### # Define components first retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.5, step=0.05, label="crop scale") video_retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.3, step=0.05, label="crop scale") driving_smooth_observation_variance_retargeting = gr.Number(value=3e-6, label="motion smooth strength", minimum=1e-11, maximum=1e-2, step=1e-8) video_retargeting_silence = gr.Checkbox(value=False, label="keeping the lip silent") eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio") lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") video_lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio") head_pitch_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative pitch") head_yaw_slider = gr.Slider(minimum=-25, maximum=25, value=0, step=1, label="relative yaw") head_roll_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative roll") mov_x = gr.Slider(minimum=-0.19, maximum=0.19, value=0.0, step=0.01, label="x-axis movement") mov_y = gr.Slider(minimum=-0.19, maximum=0.19, value=0.0, step=0.01, label="y-axis movement") mov_z = gr.Slider(minimum=0.9, maximum=1.2, value=1.0, step=0.01, label="z-axis movement") lip_variation_zero = gr.Slider(minimum=-0.09, maximum=0.09, value=0, step=0.01, label="pouting") lip_variation_one = gr.Slider(minimum=-20.0, maximum=15.0, value=0, step=0.01, label="pursing ๐") lip_variation_two = gr.Slider(minimum=0.0, maximum=15.0, value=0, step=0.01, label="grin ๐") lip_variation_three = gr.Slider(minimum=-90.0, maximum=120.0, value=0, step=1.0, label="lip close <-> open") smile = gr.Slider(minimum=-0.3, maximum=1.3, value=0, step=0.01, label="smile ๐") wink = gr.Slider(minimum=0, maximum=39, value=0, step=0.01, label="wink ๐") eyebrow = gr.Slider(minimum=-30, maximum=30, value=0, step=0.01, label="eyebrow ๐คจ") eyeball_direction_x = gr.Slider(minimum=-30.0, maximum=30.0, value=0, step=0.01, label="eye gaze (horizontal) ๐") eyeball_direction_y = gr.Slider(minimum=-63.0, maximum=63.0, value=0, step=0.01, label="eye gaze (vertical) ๐") retargeting_input_image = gr.Image(type="filepath") retargeting_input_video = gr.Video() output_image = gr.Image(type="numpy") output_image_paste_back = gr.Image(type="numpy") retargeting_output_image = gr.Image(type="numpy") retargeting_output_image_paste_back = gr.Image(type="numpy") output_video = gr.Video(autoplay=False) output_video_paste_back = gr.Video(autoplay=False) with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")])) as demo: gr.HTML(load_description(title_md)) gr.Markdown(load_description("assets/gradio/gradio_description_upload.md")) with gr.Row(): with gr.Column(): with gr.Tabs(): with gr.TabItem("๐ผ๏ธ Source Image") as tab_image: with gr.Accordion(open=True, label="Source Image"): source_image_input = gr.Image(type="filepath") gr.Examples( examples=[ [osp.join(example_portrait_dir, "s9.jpg")], [osp.join(example_portrait_dir, "s6.jpg")], [osp.join(example_portrait_dir, "s10.jpg")], [osp.join(example_portrait_dir, "s5.jpg")], [osp.join(example_portrait_dir, "s7.jpg")], [osp.join(example_portrait_dir, "s12.jpg")], [osp.join(example_portrait_dir, "s22.jpg")], [osp.join(example_portrait_dir, "s23.jpg")], ], inputs=[source_image_input], cache_examples=False, ) with gr.TabItem("๐๏ธ Source Video") as tab_video: with gr.Accordion(open=True, label="Source Video"): source_video_input = gr.Video() gr.Examples( examples=[ [osp.join(example_portrait_dir, "s13.mp4")], # [osp.join(example_portrait_dir, "s14.mp4")], # [osp.join(example_portrait_dir, "s15.mp4")], [osp.join(example_portrait_dir, "s18.mp4")], # [osp.join(example_portrait_dir, "s19.mp4")], [osp.join(example_portrait_dir, "s20.mp4")], ], inputs=[source_video_input], cache_examples=False, ) tab_selection = gr.Textbox(visible=False) tab_image.select(lambda: "Image", None, tab_selection) tab_video.select(lambda: "Video", None, tab_selection) with gr.Accordion(open=True, label="Cropping Options for Source Image or Video"): with gr.Row(): flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)") scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05) vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01) vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01) with gr.Column(): with gr.Tabs(): with gr.TabItem("๐๏ธ Driving Video") as v_tab_video: with gr.Accordion(open=True, label="Driving Video"): driving_video_input = gr.Video() gr.Examples( examples=[ [osp.join(example_video_dir, "d0.mp4")], [osp.join(example_video_dir, "d18.mp4")], [osp.join(example_video_dir, "d19.mp4")], [osp.join(example_video_dir, "d14.mp4")], [osp.join(example_video_dir, "d6.mp4")], [osp.join(example_video_dir, "d20.mp4")], ], inputs=[driving_video_input], cache_examples=False, ) with gr.TabItem("๐ผ๏ธ Driving Image") as v_tab_image: with gr.Accordion(open=True, label="Driving Image"): driving_image_input = gr.Image(type="filepath") gr.Examples( examples=[ [osp.join(example_video_dir, "d30.jpg")], [osp.join(example_video_dir, "d9.jpg")], [osp.join(example_video_dir, "d19.jpg")], [osp.join(example_video_dir, "d8.jpg")], [osp.join(example_video_dir, "d12.jpg")], [osp.join(example_video_dir, "d38.jpg")], ], inputs=[driving_image_input], cache_examples=False, ) with gr.TabItem("๐ Driving Pickle") as v_tab_pickle: with gr.Accordion(open=True, label="Driving Pickle"): driving_video_pickle_input = gr.File(type="filepath", file_types=[".pkl"]) gr.Examples( examples=[ [osp.join(example_video_dir, "d1.pkl")], [osp.join(example_video_dir, "d2.pkl")], [osp.join(example_video_dir, "d5.pkl")], [osp.join(example_video_dir, "d7.pkl")], [osp.join(example_video_dir, "d8.pkl")], ], inputs=[driving_video_pickle_input], cache_examples=False, ) v_tab_selection = gr.Textbox(visible=False) v_tab_video.select(lambda: "Video", None, v_tab_selection) v_tab_image.select(lambda: "Image", None, v_tab_selection) v_tab_pickle.select(lambda: "Pickle", None, v_tab_selection) # with gr.Accordion(open=False, label="Animation Instructions"): # gr.Markdown(load_description("assets/gradio/gradio_description_animation.md")) with gr.Accordion(open=True, label="Cropping Options for Driving Video"): with gr.Row(): flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)") scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8, maximum=3.2, step=0.05) vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5, maximum=0.5, step=0.01) vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5, maximum=0.5, step=0.01) with gr.Row(): with gr.Accordion(open=True, label="Animation Options"): with gr.Row(): flag_normalize_lip = gr.Checkbox(value=False, label="normalize lip") flag_relative_input = gr.Checkbox(value=True, label="relative motion") flag_remap_input = gr.Checkbox(value=True, label="paste-back") flag_stitching_input = gr.Checkbox(value=True, label="stitching") animation_region = gr.Radio(["exp", "pose", "lip", "eyes", "all"], value="all", label="animation region") driving_option_input = gr.Radio(['expression-friendly', 'pose-friendly'], value="expression-friendly", label="driving option (i2v)") driving_multiplier = gr.Number(value=1.0, label="driving multiplier (i2v)", minimum=0.0, maximum=2.0, step=0.02) driving_smooth_observation_variance = gr.Number(value=3e-7, label="motion smooth strength (v2v)", minimum=1e-11, maximum=1e-2, step=1e-8) gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md")) with gr.Row(): process_button_animation = gr.Button("๐ Animate", variant="primary") with gr.Row(): with gr.Column(): output_video_i2v = gr.Video(autoplay=False, label="The animated video in the original image space") with gr.Column(): output_video_concat_i2v = gr.Video(autoplay=False, label="The animated video") with gr.Row(): with gr.Column(): output_image_i2i = gr.Image(type="numpy", label="The animated image in the original image space", visible=False) with gr.Column(): output_image_concat_i2i = gr.Image(type="numpy", label="The animated image", visible=False) with gr.Row(): process_button_reset = gr.ClearButton([source_image_input, source_video_input, driving_video_pickle_input, driving_video_input, driving_image_input, output_video_i2v, output_video_concat_i2v, output_image_i2i, output_image_concat_i2i], value="๐งน Clear") with gr.Row(): # Examples gr.Markdown("## You could also choose the examples below by one click โฌ๏ธ") with gr.Row(): with gr.Tabs(): with gr.TabItem("๐ผ๏ธ Portrait Animation"): gr.Examples( examples=data_examples_i2v, fn=gpu_wrapped_execute_video, inputs=[ source_image_input, driving_video_input, flag_relative_input, flag_do_crop_input, flag_remap_input, flag_crop_driving_video_input, ], outputs=[output_image, output_image_paste_back], examples_per_page=len(data_examples_i2v), cache_examples=False, ) with gr.TabItem("๐๏ธ Portrait Video Editing"): gr.Examples( examples=data_examples_v2v, fn=gpu_wrapped_execute_video, inputs=[ source_video_input, driving_video_input, flag_relative_input, flag_do_crop_input, flag_remap_input, flag_crop_driving_video_input, driving_smooth_observation_variance, ], outputs=[output_image, output_image_paste_back], examples_per_page=len(data_examples_v2v), cache_examples=False, ) # Retargeting Image gr.Markdown(load_description("assets/gradio/gradio_description_retargeting.md"), visible=True) with gr.Row(visible=True): flag_do_crop_input_retargeting_image = gr.Checkbox(value=True, label="do crop (source)") flag_stitching_retargeting_input = gr.Checkbox(value=True, label="stitching") retargeting_source_scale.render() eye_retargeting_slider.render() lip_retargeting_slider.render() with gr.Row(visible=True): with gr.Column(): with gr.Accordion(open=True, label="Facial movement sliders"): with gr.Row(visible=True): head_pitch_slider.render() head_yaw_slider.render() head_roll_slider.render() with gr.Row(visible=True): mov_x.render() mov_y.render() mov_z.render() with gr.Column(): with gr.Accordion(open=True, label="Facial expression sliders"): with gr.Row(visible=True): lip_variation_zero.render() lip_variation_one.render() lip_variation_two.render() with gr.Row(visible=True): lip_variation_three.render() smile.render() wink.render() with gr.Row(visible=True): eyebrow.render() eyeball_direction_x.render() eyeball_direction_y.render() with gr.Row(visible=True): reset_button = gr.Button("๐ Reset") reset_button.click( fn=reset_sliders, inputs=None, outputs=[ head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z, lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y, retargeting_source_scale, flag_stitching_retargeting_input, flag_do_crop_input_retargeting_image ] ) with gr.Row(visible=True): with gr.Column(): with gr.Accordion(open=True, label="Retargeting Image Input"): retargeting_input_image.render() gr.Examples( examples=[ [osp.join(example_portrait_dir, "s9.jpg")], [osp.join(example_portrait_dir, "s6.jpg")], [osp.join(example_portrait_dir, "s10.jpg")], [osp.join(example_portrait_dir, "s5.jpg")], [osp.join(example_portrait_dir, "s7.jpg")], [osp.join(example_portrait_dir, "s12.jpg")], [osp.join(example_portrait_dir, "s22.jpg")], # [osp.join(example_portrait_dir, "s23.jpg")], [osp.join(example_portrait_dir, "s42.jpg")], ], inputs=[retargeting_input_image], cache_examples=False, ) with gr.Column(): with gr.Accordion(open=True, label="Retargeting Result"): retargeting_output_image.render() with gr.Column(): with gr.Accordion(open=True, label="Paste-back Result"): retargeting_output_image_paste_back.render() with gr.Row(visible=True): process_button_reset_retargeting = gr.ClearButton( [ retargeting_input_image, retargeting_output_image, retargeting_output_image_paste_back, ], value="๐งน Clear" ) # Retargeting Video gr.Markdown(load_description("assets/gradio/gradio_description_retargeting_video.md"), visible=True) with gr.Row(visible=True): flag_do_crop_input_retargeting_video = gr.Checkbox(value=True, label="do crop (source)") video_retargeting_source_scale.render() video_lip_retargeting_slider.render() driving_smooth_observation_variance_retargeting.render() video_retargeting_silence.render() with gr.Row(visible=True): process_button_retargeting_video = gr.Button("๐ Retargeting Video", variant="primary") with gr.Row(visible=True): with gr.Column(): with gr.Accordion(open=True, label="Retargeting Video Input"): retargeting_input_video.render() gr.Examples( examples=[ [osp.join(example_portrait_dir, "s13.mp4")], # [osp.join(example_portrait_dir, "s18.mp4")], # [osp.join(example_portrait_dir, "s20.mp4")], [osp.join(example_portrait_dir, "s29.mp4")], [osp.join(example_portrait_dir, "s32.mp4")], [osp.join(example_video_dir, "d3.mp4")], ], inputs=[retargeting_input_video], cache_examples=False, ) with gr.Column(): with gr.Accordion(open=True, label="Retargeting Result"): output_video.render() with gr.Column(): with gr.Accordion(open=True, label="Paste-back Result"): output_video_paste_back.render() with gr.Row(visible=True): process_button_reset_retargeting = gr.ClearButton( [ video_lip_retargeting_slider, retargeting_input_video, output_video, output_video_paste_back ], value="๐งน Clear" ) # binding functions for buttons process_button_animation.click( fn=gpu_wrapped_execute_video, inputs=[ source_image_input, source_video_input, driving_video_input, driving_image_input, driving_video_pickle_input, flag_normalize_lip, flag_relative_input, flag_do_crop_input, flag_remap_input, flag_stitching_input, animation_region, driving_option_input, driving_multiplier, flag_crop_driving_video_input, scale, vx_ratio, vy_ratio, scale_crop_driving_video, vx_ratio_crop_driving_video, vy_ratio_crop_driving_video, driving_smooth_observation_variance, tab_selection, v_tab_selection, ], outputs=[output_video_i2v, output_video_i2v, output_video_concat_i2v, output_video_concat_i2v, output_image_i2i, output_image_i2i, output_image_concat_i2i, output_image_concat_i2i], show_progress=True ) retargeting_input_image.change( fn=gradio_pipeline.init_retargeting_image, inputs=[retargeting_source_scale, eye_retargeting_slider, lip_retargeting_slider, retargeting_input_image], outputs=[eye_retargeting_slider, lip_retargeting_slider] ) sliders = [eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z, lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y] for slider in sliders: # NOTE: gradio >= 4.0.0 may cause slow response slider.change( fn=gpu_wrapped_execute_image_retargeting, inputs=[ eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, mov_x, mov_y, mov_z, lip_variation_zero, lip_variation_one, lip_variation_two, lip_variation_three, smile, wink, eyebrow, eyeball_direction_x, eyeball_direction_y, retargeting_input_image, retargeting_source_scale, flag_stitching_retargeting_input, flag_do_crop_input_retargeting_image ], outputs=[retargeting_output_image, retargeting_output_image_paste_back], ) process_button_retargeting_video.click( fn=gpu_wrapped_execute_video_retargeting, inputs=[video_lip_retargeting_slider, retargeting_input_video, video_retargeting_source_scale, driving_smooth_observation_variance_retargeting, video_retargeting_silence, flag_do_crop_input_retargeting_video], outputs=[output_video, output_video_paste_back], show_progress=True ) demo.launch( server_port=args.server_port, share=args.share, server_name=args.server_name )