# coding: utf-8 """ The entrance of the gradio """ import os import os.path as osp import gradio as gr import tyro from src.utils.helper import load_description from src.gradio_pipeline import GradioPipeline from src.config.crop_config import CropConfig from src.config.argument_config import ArgumentConfig from src.config.inference_config import InferenceConfig def partial_fields(target_class, kwargs): return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)}) # set tyro theme tyro.extras.set_accent_color("bright_cyan") args = tyro.cli(ArgumentConfig) # specify configs for inference inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig gradio_pipeline = GradioPipeline( inference_cfg=inference_cfg, crop_cfg=crop_cfg, args=args ) # assets title_md = "assets/gradio_title.md" example_portrait_dir = "assets/examples/source" example_video_dir = "assets/examples/driving" data_examples = [ [osp.join(example_portrait_dir, "s1.jpg"), osp.join(example_video_dir, "d1.mp4"), True, True, True], [osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d2.mp4"), True, True, True], [osp.join(example_portrait_dir, "s3.jpg"), osp.join(example_video_dir, "d5.mp4"), True, True, True], [osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d6.mp4"), True, True, True], [osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d7.mp4"), True, True, True], ] #################### interface logic #################### # Define components first eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eye-close ratio") lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-close ratio") output_image = gr.Image(label="The animated image with the given eye-close and lip-close ratio.", type="numpy") with gr.Blocks(theme=gr.themes.Soft()) as demo: gr.HTML(load_description(title_md)) gr.Markdown(load_description("assets/gradio_description_upload.md")) with gr.Row(): with gr.Accordion(open=True, label="Reference Portrait"): image_input = gr.Image(label="Please upload the reference portrait here.", type="filepath") with gr.Accordion(open=True, label="Driving Video"): video_input = gr.Video(label="Please upload the driving video here.") gr.Markdown(load_description("assets/gradio_description_animation.md")) with gr.Row(): with gr.Accordion(open=True, label="Animation Options"): with gr.Row(): flag_relative_input = gr.Checkbox(value=True, label="relative pose") flag_remap_input = gr.Checkbox(value=True, label="paste-back") flag_do_crop_input = gr.Checkbox(value=True, label="do crop") with gr.Row(): process_button_animation = gr.Button("๐Ÿš€ Animate", variant="primary") with gr.Row(): with gr.Column(): with gr.Accordion(open=True, label="The animated video in the original image space"): output_video = gr.Video(label="The animated video after pasted back.") with gr.Column(): with gr.Accordion(open=True, label="The animated video"): output_video_concat = gr.Video(label="The animated video and driving video.") with gr.Row(): process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="๐Ÿงน Clear") with gr.Row(): # Examples gr.Markdown("## You could choose the examples below โฌ‡๏ธ") with gr.Row(): gr.Examples( examples=data_examples, inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], examples_per_page=5 ) gr.Markdown(load_description("assets/gradio_description_retargeting.md")) with gr.Row(): with gr.Column(): process_button_close_ratio = gr.Button("๐Ÿค– Calculate the eye-close and lip-close ratio") process_button_retargeting = gr.Button("๐Ÿš— Retargeting", variant="primary") process_button_reset_retargeting = gr.ClearButton([output_image, eye_retargeting_slider, lip_retargeting_slider], value="๐Ÿงน Clear") # with gr.Column(): eye_retargeting_slider.render() lip_retargeting_slider.render() with gr.Column(): with gr.Accordion(open=True, label="Eye and lip Retargeting Result"): output_image.render() # binding functions for buttons process_button_close_ratio.click( fn=gradio_pipeline.prepare_retargeting, inputs=image_input, outputs=[eye_retargeting_slider, lip_retargeting_slider], show_progress=True ) process_button_retargeting.click( fn=gradio_pipeline.execute_image, inputs=[eye_retargeting_slider, lip_retargeting_slider], outputs=output_image, show_progress=True ) process_button_animation.click( fn=gradio_pipeline.execute_video, inputs=[ image_input, video_input, flag_relative_input, flag_do_crop_input, flag_remap_input ], outputs=[output_video, output_video_concat], show_progress=True ) process_button_reset.click() process_button_reset_retargeting ########################################################## demo.launch( server_name=args.server_name, server_port=args.server_port, share=args.share, )