feat: gradio acceleration (#123)

* fix: typo

* feat: gradio acceleration

* doc: update readme.md

---------

Co-authored-by: Jianzhu Guo <guojianzhu@kuaishou.com>
This commit is contained in:
ZhizhouZhong 2024-07-12 17:57:01 +08:00 committed by GitHub
parent e327753042
commit d8036cffde
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
5 changed files with 34 additions and 6 deletions

13
app.py
View File

@ -5,6 +5,7 @@ The entrance of the gradio
"""
import tyro
import subprocess
import gradio as gr
import os.path as osp
from src.utils.helper import load_description
@ -18,10 +19,22 @@ def partial_fields(target_class, kwargs):
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
def fast_check_ffmpeg():
try:
subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
return True
except:
return False
# set tyro theme
tyro.extras.set_accent_color("bright_cyan")
args = tyro.cli(ArgumentConfig)
if not fast_check_ffmpeg():
raise ImportError(
"FFmpeg is not installed. Please install FFmpeg before running this script. https://ffmpeg.org/download.html"
)
# specify configs for inference
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig

View File

@ -148,6 +148,13 @@ python app.py
You can specify the `--server_port`, `--share`, `--server_name` arguments to satisfy your needs!
🚀 We also provide an acceleration option `--flag_do_torch_compile`. The first-time inference triggers an optimization process (about one minute), making subsequent inferences 20-30% faster. Performance gains may vary with different CUDA versions.
```bash
# enable torch.compile for faster inference
python app.py --flag_do_torch_compile
```
**Note**: This method has not been fully tested. e.g., on Windows.
**Or, try it out effortlessly on [HuggingFace](https://huggingface.co/spaces/KwaiVGI/LivePortrait) 🤗**
### 5. Inference speed evaluation 🚀🚀🚀

View File

@ -23,7 +23,7 @@ class ArgumentConfig(PrintableConfig):
flag_crop_driving_video: bool = False # whether to crop the driving video, if the given driving info is a video
device_id: int = 0 # gpu device id
flag_force_cpu: bool = False # force cpu inference, WIP!
flag_lip_zero : bool = True # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
flag_lip_zero: bool = True # whether let the lip to close state before animation, only take effect when flag_eye_retargeting and flag_lip_retargeting is False
flag_eye_retargeting: bool = False # not recommend to be True, WIP
flag_lip_retargeting: bool = False # not recommend to be True, WIP
flag_stitching: bool = True # recommend to True if head movement is small, False if head movement is large
@ -45,3 +45,4 @@ class ArgumentConfig(PrintableConfig):
server_port: Annotated[int, tyro.conf.arg(aliases=["-p"])] = 8890 # port for gradio server
share: bool = False # whether to share the server to public
server_name: Optional[str] = "127.0.0.1" # set the local server name, "0.0.0.0" to broadcast all
flag_do_torch_compile: bool = False # whether to use torch.compile to accelerate generation

View File

@ -14,7 +14,7 @@ from .base_config import PrintableConfig, make_abs_path
@dataclass(repr=False) # use repr from PrintableConfig
class InferenceConfig(PrintableConfig):
# MODEL CONFIG, NOT EXPOERTED PARAMS
# MODEL CONFIG, NOT EXPORTED PARAMS
models_config: str = make_abs_path('./models.yaml') # portrait animation config
checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
@ -22,7 +22,7 @@ class InferenceConfig(PrintableConfig):
checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
# EXPOERTED PARAMS
# EXPORTED PARAMS
flag_use_half_precision: bool = True
flag_crop_driving_video: bool = False
device_id: int = 0
@ -35,8 +35,9 @@ class InferenceConfig(PrintableConfig):
flag_do_crop: bool = True
flag_do_rot: bool = True
flag_force_cpu: bool = False
flag_do_torch_compile: bool = False
# NOT EXPOERTED PARAMS
# NOT EXPORTED PARAMS
lip_zero_threshold: float = 0.03 # threshold for flag_lip_zero
anchor_frame: int = 0 # TO IMPLEMENT

View File

@ -24,6 +24,7 @@ class LivePortraitWrapper(object):
self.inference_cfg = inference_cfg
self.device_id = inference_cfg.device_id
self.compile = inference_cfg.flag_do_torch_compile
if inference_cfg.flag_force_cpu:
self.device = 'cpu'
else:
@ -48,8 +49,10 @@ class LivePortraitWrapper(object):
log(f'Load stitching_retargeting_module done.')
else:
self.stitching_retargeting_module = None
# Optimize for inference
if self.compile:
self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
self.timer = Timer()
@ -261,6 +264,9 @@ class LivePortraitWrapper(object):
# The line 18 in Algorithm 1: D(W(f_s; x_s, x_d,i)
with torch.no_grad():
with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.inference_cfg.flag_use_half_precision):
if self.compile:
# Mark the beginning of a new CUDA Graph step
torch.compiler.cudagraph_mark_step_begin()
# get decoder input
ret_dct = self.warping_module(feature_3d, kp_source=kp_source, kp_driving=kp_driving)
# decode