diff --git a/.gitignore b/.gitignore
index ad97cdf..7e9e638 100644
--- a/.gitignore
+++ b/.gitignore
@@ -12,6 +12,7 @@ __pycache__/
pretrained_weights/*.md
pretrained_weights/docs
pretrained_weights/liveportrait
+pretrained_weights/liveportrait_animals
# Ipython notebook
*.ipynb
@@ -26,3 +27,8 @@ gradio_temp/**
# Windows dependencies
ffmpeg/
LivePortrait_env/
+
+# XPose build files
+src/utils/dependencies/XPose/models/UniPose/ops/build
+src/utils/dependencies/XPose/models/UniPose/ops/dist
+src/utils/dependencies/XPose/models/UniPose/ops/MultiScaleDeformableAttention.egg-info
diff --git a/app.py b/app.py
index 4faa827..c1e895a 100644
--- a/app.py
+++ b/app.py
@@ -1,7 +1,7 @@
# coding: utf-8
"""
-The entrance of the gradio
+The entrance of the gradio for human
"""
import os
@@ -59,9 +59,11 @@ def gpu_wrapped_execute_video(*args, **kwargs):
return gradio_pipeline.execute_video(*args, **kwargs)
-def gpu_wrapped_execute_image(*args, **kwargs):
- return gradio_pipeline.execute_image(*args, **kwargs)
+def gpu_wrapped_execute_image_retargeting(*args, **kwargs):
+ return gradio_pipeline.execute_image_retargeting(*args, **kwargs)
+def gpu_wrapped_execute_video_retargeting(*args, **kwargs):
+ return gradio_pipeline.execute_video_retargeting(*args, **kwargs)
# assets
title_md = "assets/gradio/gradio_title.md"
@@ -87,14 +89,20 @@ data_examples_v2v = [
# Define components first
retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.5, step=0.05, label="crop scale")
+video_retargeting_source_scale = gr.Number(minimum=1.8, maximum=3.2, value=2.3, step=0.05, label="crop scale")
+driving_smooth_observation_variance_retargeting = gr.Number(value=3e-6, label="motion smooth strength", minimum=1e-11, maximum=1e-2, step=1e-8)
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eyes-open ratio")
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
+video_lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-open ratio")
head_pitch_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative pitch")
head_yaw_slider = gr.Slider(minimum=-25, maximum=25, value=0, step=1, label="relative yaw")
head_roll_slider = gr.Slider(minimum=-15.0, maximum=15.0, value=0, step=1, label="relative roll")
retargeting_input_image = gr.Image(type="filepath")
+retargeting_input_video = gr.Video()
output_image = gr.Image(type="numpy")
output_image_paste_back = gr.Image(type="numpy")
+output_video = gr.Video(autoplay=False)
+output_video_paste_back = gr.Video(autoplay=False)
output_video_i2v = gr.Video(autoplay=False)
output_video_concat_i2v = gr.Video(autoplay=False)
@@ -179,6 +187,9 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
with gr.Row():
flag_relative_input = gr.Checkbox(value=True, label="relative motion")
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
+ flag_stitching_input = gr.Checkbox(value=True, label="stitching")
+ driving_option_input = gr.Radio(['expression-friendly', 'pose-friendly'], value="expression-friendly", label="driving option (i2v)")
+ driving_multiplier = gr.Number(value=1.0, label="driving multiplier (i2v)", minimum=0.0, maximum=2.0, step=0.02)
flag_video_editing_head_rotation = gr.Checkbox(value=False, label="relative head rotation (v2v)")
driving_smooth_observation_variance = gr.Number(value=3e-7, label="motion smooth strength (v2v)", minimum=1e-11, maximum=1e-2, step=1e-8)
@@ -235,9 +246,10 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
cache_examples=False,
)
- # Retargeting
+ # Retargeting Image
gr.Markdown(load_description("assets/gradio/gradio_description_retargeting.md"), visible=True)
with gr.Row(visible=True):
+ flag_do_crop_input_retargeting_image = gr.Checkbox(value=True, label="do crop (source)")
retargeting_source_scale.render()
eye_retargeting_slider.render()
lip_retargeting_slider.render()
@@ -246,10 +258,10 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
head_yaw_slider.render()
head_roll_slider.render()
with gr.Row(visible=True):
- process_button_retargeting = gr.Button("๐ Retargeting", variant="primary")
+ process_button_retargeting = gr.Button("๐ Retargeting Image", variant="primary")
with gr.Row(visible=True):
with gr.Column():
- with gr.Accordion(open=True, label="Retargeting Input"):
+ with gr.Accordion(open=True, label="Retargeting Image Input"):
retargeting_input_image.render()
gr.Examples(
examples=[
@@ -286,15 +298,48 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
value="๐งน Clear"
)
- # binding functions for buttons
- process_button_retargeting.click(
- # fn=gradio_pipeline.execute_image,
- fn=gpu_wrapped_execute_image,
- inputs=[eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, retargeting_input_image, retargeting_source_scale, flag_do_crop_input],
- outputs=[output_image, output_image_paste_back],
- show_progress=True
- )
+ # Retargeting Video
+ gr.Markdown(load_description("assets/gradio/gradio_description_retargeting_video.md"), visible=True)
+ with gr.Row(visible=True):
+ flag_do_crop_input_retargeting_video = gr.Checkbox(value=True, label="do crop (source)")
+ video_retargeting_source_scale.render()
+ video_lip_retargeting_slider.render()
+ driving_smooth_observation_variance_retargeting.render()
+ with gr.Row(visible=True):
+ process_button_retargeting_video = gr.Button("๐ Retargeting Video", variant="primary")
+ with gr.Row(visible=True):
+ with gr.Column():
+ with gr.Accordion(open=True, label="Retargeting Video Input"):
+ retargeting_input_video.render()
+ gr.Examples(
+ examples=[
+ [osp.join(example_portrait_dir, "s13.mp4")],
+ # [osp.join(example_portrait_dir, "s18.mp4")],
+ [osp.join(example_portrait_dir, "s20.mp4")],
+ [osp.join(example_portrait_dir, "s29.mp4")],
+ [osp.join(example_portrait_dir, "s32.mp4")],
+ ],
+ inputs=[retargeting_input_video],
+ cache_examples=False,
+ )
+ with gr.Column():
+ with gr.Accordion(open=True, label="Retargeting Result"):
+ output_video.render()
+ with gr.Column():
+ with gr.Accordion(open=True, label="Paste-back Result"):
+ output_video_paste_back.render()
+ with gr.Row(visible=True):
+ process_button_reset_retargeting = gr.ClearButton(
+ [
+ video_lip_retargeting_slider,
+ retargeting_input_video,
+ output_video,
+ output_video_paste_back
+ ],
+ value="๐งน Clear"
+ )
+ # binding functions for buttons
process_button_animation.click(
fn=gpu_wrapped_execute_video,
inputs=[
@@ -304,6 +349,9 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
flag_relative_input,
flag_do_crop_input,
flag_remap_input,
+ flag_stitching_input,
+ driving_option_input,
+ driving_multiplier,
flag_crop_driving_video_input,
flag_video_editing_head_rotation,
scale,
@@ -320,11 +368,26 @@ with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta San
)
retargeting_input_image.change(
- fn=gradio_pipeline.init_retargeting,
+ fn=gradio_pipeline.init_retargeting_image,
inputs=[retargeting_source_scale, retargeting_input_image],
outputs=[eye_retargeting_slider, lip_retargeting_slider]
)
+ process_button_retargeting.click(
+ # fn=gradio_pipeline.execute_image,
+ fn=gpu_wrapped_execute_image_retargeting,
+ inputs=[eye_retargeting_slider, lip_retargeting_slider, head_pitch_slider, head_yaw_slider, head_roll_slider, retargeting_input_image, retargeting_source_scale, flag_do_crop_input_retargeting_image],
+ outputs=[output_image, output_image_paste_back],
+ show_progress=True
+ )
+
+ process_button_retargeting_video.click(
+ fn=gpu_wrapped_execute_video_retargeting,
+ inputs=[video_lip_retargeting_slider, retargeting_input_video, video_retargeting_source_scale, driving_smooth_observation_variance_retargeting, flag_do_crop_input_retargeting_video],
+ outputs=[output_video, output_video_paste_back],
+ show_progress=True
+ )
+
demo.launch(
server_port=args.server_port,
share=args.share,
diff --git a/app_animals.py b/app_animals.py
new file mode 100644
index 0000000..361044a
--- /dev/null
+++ b/app_animals.py
@@ -0,0 +1,248 @@
+# coding: utf-8
+
+"""
+The entrance of the gradio for animal
+"""
+
+import os
+import tyro
+import subprocess
+import gradio as gr
+import os.path as osp
+from src.utils.helper import load_description
+from src.gradio_pipeline import GradioPipelineAnimal
+from src.config.crop_config import CropConfig
+from src.config.argument_config import ArgumentConfig
+from src.config.inference_config import InferenceConfig
+
+
+def partial_fields(target_class, kwargs):
+ return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
+
+
+def fast_check_ffmpeg():
+ try:
+ subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
+ return True
+ except:
+ return False
+
+
+# set tyro theme
+tyro.extras.set_accent_color("bright_cyan")
+args = tyro.cli(ArgumentConfig)
+
+ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
+if osp.exists(ffmpeg_dir):
+ os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
+
+if not fast_check_ffmpeg():
+ raise ImportError(
+ "FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
+ )
+# specify configs for inference
+inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
+crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
+
+gradio_pipeline_animal: GradioPipelineAnimal = GradioPipelineAnimal(
+ inference_cfg=inference_cfg,
+ crop_cfg=crop_cfg,
+ args=args
+)
+
+if args.gradio_temp_dir not in (None, ''):
+ os.environ["GRADIO_TEMP_DIR"] = args.gradio_temp_dir
+ os.makedirs(args.gradio_temp_dir, exist_ok=True)
+
+def gpu_wrapped_execute_video(*args, **kwargs):
+ return gradio_pipeline_animal.execute_video(*args, **kwargs)
+
+
+# assets
+title_md = "assets/gradio/gradio_title.md"
+example_portrait_dir = "assets/examples/source"
+example_video_dir = "assets/examples/driving"
+data_examples_i2v = [
+ [osp.join(example_portrait_dir, "s41.jpg"), osp.join(example_video_dir, "d3.mp4"), True, False, False, False],
+ [osp.join(example_portrait_dir, "s40.jpg"), osp.join(example_video_dir, "d6.mp4"), True, False, False, False],
+ [osp.join(example_portrait_dir, "s25.jpg"), osp.join(example_video_dir, "d19.mp4"), True, False, False, False],
+]
+data_examples_i2v_pickle = [
+ [osp.join(example_portrait_dir, "s25.jpg"), osp.join(example_video_dir, "wink.pkl"), True, False, False, False],
+ [osp.join(example_portrait_dir, "s40.jpg"), osp.join(example_video_dir, "talking.pkl"), True, False, False, False],
+ [osp.join(example_portrait_dir, "s41.jpg"), osp.join(example_video_dir, "aggrieved.pkl"), True, False, False, False],
+]
+#################### interface logic ####################
+
+# Define components first
+output_image = gr.Image(type="numpy")
+output_image_paste_back = gr.Image(type="numpy")
+output_video_i2v = gr.Video(autoplay=False)
+output_video_concat_i2v = gr.Video(autoplay=False)
+output_video_i2v_gif = gr.Image(type="numpy")
+
+
+with gr.Blocks(theme=gr.themes.Soft(font=[gr.themes.GoogleFont("Plus Jakarta Sans")])) as demo:
+ gr.HTML(load_description(title_md))
+
+ gr.Markdown(load_description("assets/gradio/gradio_description_upload_animal.md"))
+ with gr.Row():
+ with gr.Column():
+ with gr.Accordion(open=True, label="๐ฑ Source Animal Image"):
+ source_image_input = gr.Image(type="filepath")
+ gr.Examples(
+ examples=[
+ [osp.join(example_portrait_dir, "s25.jpg")],
+ [osp.join(example_portrait_dir, "s30.jpg")],
+ [osp.join(example_portrait_dir, "s31.jpg")],
+ [osp.join(example_portrait_dir, "s32.jpg")],
+ [osp.join(example_portrait_dir, "s39.jpg")],
+ [osp.join(example_portrait_dir, "s40.jpg")],
+ [osp.join(example_portrait_dir, "s41.jpg")],
+ [osp.join(example_portrait_dir, "s38.jpg")],
+ [osp.join(example_portrait_dir, "s36.jpg")],
+ ],
+ inputs=[source_image_input],
+ cache_examples=False,
+ )
+
+ with gr.Accordion(open=True, label="Cropping Options for Source Image"):
+ with gr.Row():
+ flag_do_crop_input = gr.Checkbox(value=True, label="do crop (source)")
+ scale = gr.Number(value=2.3, label="source crop scale", minimum=1.8, maximum=3.2, step=0.05)
+ vx_ratio = gr.Number(value=0.0, label="source crop x", minimum=-0.5, maximum=0.5, step=0.01)
+ vy_ratio = gr.Number(value=-0.125, label="source crop y", minimum=-0.5, maximum=0.5, step=0.01)
+
+ with gr.Column():
+ with gr.Tabs():
+ with gr.TabItem("๐ Driving Pickle") as tab_pickle:
+ with gr.Accordion(open=True, label="Driving Pickle"):
+ driving_video_pickle_input = gr.File()
+ gr.Examples(
+ examples=[
+ [osp.join(example_video_dir, "wink.pkl")],
+ [osp.join(example_video_dir, "shy.pkl")],
+ [osp.join(example_video_dir, "aggrieved.pkl")],
+ [osp.join(example_video_dir, "open_lip.pkl")],
+ [osp.join(example_video_dir, "laugh.pkl")],
+ [osp.join(example_video_dir, "talking.pkl")],
+ [osp.join(example_video_dir, "shake_face.pkl")],
+ ],
+ inputs=[driving_video_pickle_input],
+ cache_examples=False,
+ )
+ with gr.TabItem("๐๏ธ Driving Video") as tab_video:
+ with gr.Accordion(open=True, label="Driving Video"):
+ driving_video_input = gr.Video()
+ gr.Examples(
+ examples=[
+ # [osp.join(example_video_dir, "d0.mp4")],
+ # [osp.join(example_video_dir, "d18.mp4")],
+ [osp.join(example_video_dir, "d19.mp4")],
+ [osp.join(example_video_dir, "d14.mp4")],
+ [osp.join(example_video_dir, "d6.mp4")],
+ [osp.join(example_video_dir, "d3.mp4")],
+ ],
+ inputs=[driving_video_input],
+ cache_examples=False,
+ )
+
+ tab_selection = gr.Textbox(visible=False)
+ tab_pickle.select(lambda: "Pickle", None, tab_selection)
+ tab_video.select(lambda: "Video", None, tab_selection)
+ with gr.Accordion(open=True, label="Cropping Options for Driving Video"):
+ with gr.Row():
+ flag_crop_driving_video_input = gr.Checkbox(value=False, label="do crop (driving)")
+ scale_crop_driving_video = gr.Number(value=2.2, label="driving crop scale", minimum=1.8, maximum=3.2, step=0.05)
+ vx_ratio_crop_driving_video = gr.Number(value=0.0, label="driving crop x", minimum=-0.5, maximum=0.5, step=0.01)
+ vy_ratio_crop_driving_video = gr.Number(value=-0.1, label="driving crop y", minimum=-0.5, maximum=0.5, step=0.01)
+
+ with gr.Row():
+ with gr.Accordion(open=False, label="Animation Options"):
+ with gr.Row():
+ flag_stitching = gr.Checkbox(value=False, label="stitching (not recommended)")
+ flag_remap_input = gr.Checkbox(value=False, label="paste-back (not recommended)")
+ driving_multiplier = gr.Number(value=1.0, label="driving multiplier", minimum=0.0, maximum=2.0, step=0.02)
+
+ gr.Markdown(load_description("assets/gradio/gradio_description_animate_clear.md"))
+ with gr.Row():
+ process_button_animation = gr.Button("๐ Animate", variant="primary")
+ with gr.Row():
+ with gr.Column():
+ with gr.Accordion(open=True, label="The animated video in the cropped image space"):
+ output_video_i2v.render()
+ with gr.Column():
+ with gr.Accordion(open=True, label="The animated gif in the cropped image space"):
+ output_video_i2v_gif.render()
+ with gr.Column():
+ with gr.Accordion(open=True, label="The animated video"):
+ output_video_concat_i2v.render()
+ with gr.Row():
+ process_button_reset = gr.ClearButton([source_image_input, driving_video_input, output_video_i2v, output_video_concat_i2v, output_video_i2v_gif], value="๐งน Clear")
+
+ with gr.Row():
+ # Examples
+ gr.Markdown("## You could also choose the examples below by one click โฌ๏ธ")
+ with gr.Row():
+ with gr.Tabs():
+ with gr.TabItem("๐ Driving Pickle") as tab_video:
+ gr.Examples(
+ examples=data_examples_i2v_pickle,
+ fn=gpu_wrapped_execute_video,
+ inputs=[
+ source_image_input,
+ driving_video_pickle_input,
+ flag_do_crop_input,
+ flag_stitching,
+ flag_remap_input,
+ flag_crop_driving_video_input,
+ ],
+ outputs=[output_image, output_image_paste_back, output_video_i2v_gif],
+ examples_per_page=len(data_examples_i2v_pickle),
+ cache_examples=False,
+ )
+ with gr.TabItem("๐๏ธ Driving Video") as tab_video:
+ gr.Examples(
+ examples=data_examples_i2v,
+ fn=gpu_wrapped_execute_video,
+ inputs=[
+ source_image_input,
+ driving_video_input,
+ flag_do_crop_input,
+ flag_stitching,
+ flag_remap_input,
+ flag_crop_driving_video_input,
+ ],
+ outputs=[output_image, output_image_paste_back, output_video_i2v_gif],
+ examples_per_page=len(data_examples_i2v),
+ cache_examples=False,
+ )
+
+ process_button_animation.click(
+ fn=gpu_wrapped_execute_video,
+ inputs=[
+ source_image_input,
+ driving_video_input,
+ driving_video_pickle_input,
+ flag_do_crop_input,
+ flag_remap_input,
+ driving_multiplier,
+ flag_stitching,
+ flag_crop_driving_video_input,
+ scale,
+ vx_ratio,
+ vy_ratio,
+ scale_crop_driving_video,
+ vx_ratio_crop_driving_video,
+ vy_ratio_crop_driving_video,
+ tab_selection,
+ ],
+ outputs=[output_video_i2v, output_video_concat_i2v, output_video_i2v_gif],
+ show_progress=True
+ )
+
+demo.launch(
+ server_port=args.server_port,
+ share=args.share,
+ server_name=args.server_name
+)
diff --git a/assets/docs/animals-mode-gradio-2024-08-02.jpg b/assets/docs/animals-mode-gradio-2024-08-02.jpg
new file mode 100644
index 0000000..6038147
Binary files /dev/null and b/assets/docs/animals-mode-gradio-2024-08-02.jpg differ
diff --git a/assets/docs/changelog/2024-08-02.md b/assets/docs/changelog/2024-08-02.md
new file mode 100644
index 0000000..e20db2e
--- /dev/null
+++ b/assets/docs/changelog/2024-08-02.md
@@ -0,0 +1,68 @@
+## 2024/08/02
+
+
+
+ Animals Singing Dance Monkey ๐ค |
+
+
+
+
+
+ |
+
+
+
+
+๐ We are excited to announce the release of a new version featuring animals mode, along with several other updates. Special thanks to the dedicated efforts of the LivePortrait team. ๐ช
+
+### Updates on Animals mode
+We are pleased to announce the release of the animals mode, which is fine-tuned on approximately 230K frames of various animals (mostly cats and dogs). The trained weights have been updated in the `liveportrait_animals` subdirectory, available on [HuggingFace](https://huggingface.co/KwaiVGI/LivePortrait/tree/main/) or [Google Drive](https://drive.google.com/drive/u/0/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib). You should [download the weights](https://github.com/KwaiVGI/LivePortrait?tab=readme-ov-file#2-download-pretrained-weights) before running. There are two ways to run this mode.
+
+> Please note that we have not trained the stitching and retargeting modules for the animals model due to several technical issues. This may be addressed in future updates. Therefore, we recommend using the `--no_flag_stitching` option when running the model.
+
+Before launching, ensure you have installed `transformers==4.22.0`, `pillow>=10.2.0`, which are already updated in [`requirements_base.txt`](../../../requirements_base.txt). We have chosen [XPose](https://github.com/IDEA-Research/X-Pose) as the keypoints detector for animals. This relies on `transformers` and requires building an OP named `MultiScaleDeformableAttention` by
+```bash
+cd src/utils/dependencies/XPose/models/UniPose/ops
+python setup.py build install
+cd - # equal to cd ../../../../../../../
+```
+
+You can run the model using the script `inference_animal.py`:
+```bash
+python inference_animal.py -s assets/examples/source/s39.jpg -d assets/examples/driving/wink.pkl --no_flag_stitching --driving_multiplier 1.75
+```
+
+Alternatively, we recommend using Gradio. Simply launch it by running:
+```bash
+python app_animal.py # --server_port 8889 --server_name "0.0.0.0" --share
+```
+
+> [!WARNING]
+> [XPose](https://github.com/IDEA-Research/X-Pose) is only for Non-commercial Scientific Research Purposes, you should remove and replace it with other detectors if you use it for commercial purposes.
+
+### Updates on Humans Mode
+
+- **Driving Options**: We have introduced an `expression-friendly` driving option to **reduce head wobbling**, now set as the default. While it may be less effective with large head poses, you can also select the `pose-friendly` option, which is the same as the previous version. This can be set using `--driving_option` or selected in the Gradio interface. Additionally, we added a `--driving_multiplier` option to adjust driving intensity, with a default value of 1, which can also be set in the Gradio interface.
+
+- **Retargeting Video in Gradio**: We have implemented a video retargeting feature. You can specify a `target lip-open ratio` to adjust the mouth movement in the source video. For instance, setting it to 0 will close the mouth in the source video ๐ค.
+
+### Others
+
+- [**Poe supports LivePortrait**](https://poe.com/LivePortrait). Check out the news on [X](https://x.com/poe_platform/status/1816136105781256260).
+- [ComfyUI-LivePortraitKJ](https://github.com/kijai/ComfyUI-LivePortraitKJ) (1.1K ๐) now includes MediaPipe as an alternative to InsightFace, ensuring the license remains under MIT and Apache 2.0.
+
+
+
+**Below are some screenshots of the new features and improvements:**
+
+| ![The Gradio Interface of Animals Mode](../animals-mode-gradio-2024-08-02.jpg) |
+|:---:|
+| **The Gradio Interface of Animals Mode** |
+
+| ![Driving Options and Multiplier](../driving-option-multiplier-2024-08-02.jpg) |
+|:---:|
+| **Driving Options and Multiplier** |
+
+| ![The Feature of Retargeting Video](../retargeting-video-2024-08-02.jpg) |
+|:---:|
+| **The Feature of Retargeting Video** |
diff --git a/assets/docs/directory-structure.md b/assets/docs/directory-structure.md
new file mode 100644
index 0000000..35e14f7
--- /dev/null
+++ b/assets/docs/directory-structure.md
@@ -0,0 +1,28 @@
+## The directory structure of `pretrained_weights`
+
+```text
+pretrained_weights
+โโโ insightface
+โ โโโ models
+โ โโโ buffalo_l
+โ โโโ 2d106det.onnx
+โ โโโ det_10g.onnx
+โโโ liveportrait
+โ โโโ base_models
+โ โ โโโ appearance_feature_extractor.pth
+โ โ โโโ motion_extractor.pth
+โ โ โโโ spade_generator.pth
+โ โ โโโ warping_module.pth
+โ โโโ landmark.onnx
+โ โโโ retargeting_models
+โ โโโ stitching_retargeting_module.pth
+โโโ liveportrait_animals
+ โโโ base_models
+ โ โโโ appearance_feature_extractor.pth
+ โ โโโ motion_extractor.pth
+ โ โโโ spade_generator.pth
+ โ โโโ warping_module.pth
+ โโโ retargeting_models
+ โ โโโ stitching_retargeting_module.pth
+ โโโ xpose.pth
+```
diff --git a/assets/docs/driving-option-multiplier-2024-08-02.jpg b/assets/docs/driving-option-multiplier-2024-08-02.jpg
new file mode 100644
index 0000000..02f9872
Binary files /dev/null and b/assets/docs/driving-option-multiplier-2024-08-02.jpg differ
diff --git a/assets/docs/how-to-install-ffmpeg.md b/assets/docs/how-to-install-ffmpeg.md
new file mode 100644
index 0000000..b84edfc
--- /dev/null
+++ b/assets/docs/how-to-install-ffmpeg.md
@@ -0,0 +1,29 @@
+## Install FFmpeg
+
+Make sure you have `ffmpeg` and `ffprobe` installed on your system. If you don't have them installed, follow the instructions below.
+
+> [!Note]
+> The installation is copied from [SoVITS](https://github.com/RVC-Boss/GPT-SoVITS) ๐ค
+
+### Conda Users
+
+```bash
+conda install ffmpeg
+```
+
+### Ubuntu/Debian Users
+
+```bash
+sudo apt install ffmpeg
+sudo apt install libsox-dev
+conda install -c conda-forge 'ffmpeg<7'
+```
+
+### Windows Users
+
+Download and place [ffmpeg.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffmpeg.exe) and [ffprobe.exe](https://huggingface.co/lj1995/VoiceConversionWebUI/blob/main/ffprobe.exe) in the GPT-SoVITS root.
+
+### MacOS Users
+```bash
+brew install ffmpeg
+```
diff --git a/assets/docs/inference-animals.gif b/assets/docs/inference-animals.gif
new file mode 100644
index 0000000..d76f9ad
Binary files /dev/null and b/assets/docs/inference-animals.gif differ
diff --git a/assets/docs/retargeting-video-2024-08-02.jpg b/assets/docs/retargeting-video-2024-08-02.jpg
new file mode 100644
index 0000000..d199883
Binary files /dev/null and b/assets/docs/retargeting-video-2024-08-02.jpg differ
diff --git a/assets/docs/speed.md b/assets/docs/speed.md
new file mode 100644
index 0000000..4981816
--- /dev/null
+++ b/assets/docs/speed.md
@@ -0,0 +1,13 @@
+### Speed
+
+Below are the results of inferring one frame on an RTX 4090 GPU using the native PyTorch framework with `torch.compile`:
+
+| Model | Parameters(M) | Model Size(MB) | Inference(ms) |
+|-----------------------------------|:-------------:|:--------------:|:-------------:|
+| Appearance Feature Extractor | 0.84 | 3.3 | 0.82 |
+| Motion Extractor | 28.12 | 108 | 0.84 |
+| Spade Generator | 55.37 | 212 | 7.59 |
+| Warping Module | 45.53 | 174 | 5.21 |
+| Stitching and Retargeting Modules | 0.23 | 2.3 | 0.31 |
+
+*Note: The values for the Stitching and Retargeting Modules represent the combined parameter counts and total inference time of three sequential MLP networks.*
diff --git a/assets/examples/driving/aggrieved.pkl b/assets/examples/driving/aggrieved.pkl
new file mode 100644
index 0000000..b92292e
Binary files /dev/null and b/assets/examples/driving/aggrieved.pkl differ
diff --git a/assets/examples/driving/laugh.pkl b/assets/examples/driving/laugh.pkl
new file mode 100644
index 0000000..d86e49c
Binary files /dev/null and b/assets/examples/driving/laugh.pkl differ
diff --git a/assets/examples/driving/open_lip.pkl b/assets/examples/driving/open_lip.pkl
new file mode 100644
index 0000000..f57a2f7
Binary files /dev/null and b/assets/examples/driving/open_lip.pkl differ
diff --git a/assets/examples/driving/shake_face.pkl b/assets/examples/driving/shake_face.pkl
new file mode 100644
index 0000000..f628d2d
Binary files /dev/null and b/assets/examples/driving/shake_face.pkl differ
diff --git a/assets/examples/driving/shy.pkl b/assets/examples/driving/shy.pkl
new file mode 100644
index 0000000..bed1cbc
Binary files /dev/null and b/assets/examples/driving/shy.pkl differ
diff --git a/assets/examples/driving/talking.pkl b/assets/examples/driving/talking.pkl
new file mode 100644
index 0000000..ac22e05
Binary files /dev/null and b/assets/examples/driving/talking.pkl differ
diff --git a/assets/examples/driving/wink.pkl b/assets/examples/driving/wink.pkl
new file mode 100644
index 0000000..422a5a8
Binary files /dev/null and b/assets/examples/driving/wink.pkl differ
diff --git a/assets/examples/source/s25.jpg b/assets/examples/source/s25.jpg
new file mode 100644
index 0000000..bda1537
Binary files /dev/null and b/assets/examples/source/s25.jpg differ
diff --git a/assets/examples/source/s29.mp4 b/assets/examples/source/s29.mp4
new file mode 100644
index 0000000..6fa0e8c
Binary files /dev/null and b/assets/examples/source/s29.mp4 differ
diff --git a/assets/examples/source/s30.jpg b/assets/examples/source/s30.jpg
new file mode 100644
index 0000000..c5462b6
Binary files /dev/null and b/assets/examples/source/s30.jpg differ
diff --git a/assets/examples/source/s31.jpg b/assets/examples/source/s31.jpg
new file mode 100644
index 0000000..e223aca
Binary files /dev/null and b/assets/examples/source/s31.jpg differ
diff --git a/assets/examples/source/s32.jpg b/assets/examples/source/s32.jpg
new file mode 100644
index 0000000..8534fe8
Binary files /dev/null and b/assets/examples/source/s32.jpg differ
diff --git a/assets/examples/source/s32.mp4 b/assets/examples/source/s32.mp4
new file mode 100644
index 0000000..a0a3fb7
Binary files /dev/null and b/assets/examples/source/s32.mp4 differ
diff --git a/assets/examples/source/s36.jpg b/assets/examples/source/s36.jpg
new file mode 100644
index 0000000..5e172eb
Binary files /dev/null and b/assets/examples/source/s36.jpg differ
diff --git a/assets/examples/source/s38.jpg b/assets/examples/source/s38.jpg
new file mode 100644
index 0000000..1f05976
Binary files /dev/null and b/assets/examples/source/s38.jpg differ
diff --git a/assets/examples/source/s39.jpg b/assets/examples/source/s39.jpg
new file mode 100644
index 0000000..0f6dd26
Binary files /dev/null and b/assets/examples/source/s39.jpg differ
diff --git a/assets/examples/source/s40.jpg b/assets/examples/source/s40.jpg
new file mode 100644
index 0000000..1f1d9d0
Binary files /dev/null and b/assets/examples/source/s40.jpg differ
diff --git a/assets/examples/source/s41.jpg b/assets/examples/source/s41.jpg
new file mode 100644
index 0000000..83a8323
Binary files /dev/null and b/assets/examples/source/s41.jpg differ
diff --git a/assets/gradio/gradio_description_retargeting.md b/assets/gradio/gradio_description_retargeting.md
index bd7b2bb..5978d08 100644
--- a/assets/gradio/gradio_description_retargeting.md
+++ b/assets/gradio/gradio_description_retargeting.md
@@ -6,8 +6,8 @@
-
Retargeting
-
Upload a Source Portrait as Retargeting Input, then drag the sliders and click the ๐ Retargeting button. You can try running it multiple times.
+
Retargeting Image
+
Upload a Source Portrait as Retargeting Input, then drag the sliders and click the ๐ Retargeting Image button. You can try running it multiple times.
๐ Set both target eyes-open and lip-open ratios to 0.8 to see what's going on!
diff --git a/assets/gradio/gradio_description_retargeting_video.md b/assets/gradio/gradio_description_retargeting_video.md
new file mode 100644
index 0000000..e54be9e
--- /dev/null
+++ b/assets/gradio/gradio_description_retargeting_video.md
@@ -0,0 +1,9 @@
+
+
+
+
Retargeting Video
+
Upload a Source Video as Retargeting Input, then drag the sliders and click the ๐ Retargeting Video button. You can try running it multiple times.
+
+ ๐ค Set target lip-open ratio to 0 to see what's going on!
+
+
diff --git a/assets/gradio/gradio_description_upload_animal.md b/assets/gradio/gradio_description_upload_animal.md
new file mode 100644
index 0000000..cefe812
--- /dev/null
+++ b/assets/gradio/gradio_description_upload_animal.md
@@ -0,0 +1,16 @@
+
+
+
+
+ Step 1: Upload a Source Animal Image (any aspect ratio) โฌ๏ธ
+
+
+
+
+ Step 2: Upload a Driving Pickle or Driving Video (any aspect ratio) โฌ๏ธ
+
+
+ Tips: Focus on the head, minimize shoulder movement, neutral expression in first frame.
+
+
+
diff --git a/inference.py b/inference.py
index 686dd81..5c80818 100644
--- a/inference.py
+++ b/inference.py
@@ -1,4 +1,7 @@
# coding: utf-8
+"""
+for human
+"""
import os
import os.path as osp
diff --git a/inference_animal.py b/inference_animal.py
new file mode 100644
index 0000000..8fddf7b
--- /dev/null
+++ b/inference_animal.py
@@ -0,0 +1,65 @@
+# coding: utf-8
+"""
+for animal
+"""
+
+import os
+import os.path as osp
+import tyro
+import subprocess
+from src.config.argument_config import ArgumentConfig
+from src.config.inference_config import InferenceConfig
+from src.config.crop_config import CropConfig
+from src.live_portrait_pipeline_animal import LivePortraitPipelineAnimal
+
+
+def partial_fields(target_class, kwargs):
+ return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
+
+
+def fast_check_ffmpeg():
+ try:
+ subprocess.run(["ffmpeg", "-version"], capture_output=True, check=True)
+ return True
+ except:
+ return False
+
+
+def fast_check_args(args: ArgumentConfig):
+ if not osp.exists(args.source):
+ raise FileNotFoundError(f"source info not found: {args.source}")
+ if not osp.exists(args.driving):
+ raise FileNotFoundError(f"driving info not found: {args.driving}")
+
+
+def main():
+ # set tyro theme
+ tyro.extras.set_accent_color("bright_cyan")
+ args = tyro.cli(ArgumentConfig)
+
+ ffmpeg_dir = os.path.join(os.getcwd(), "ffmpeg")
+ if osp.exists(ffmpeg_dir):
+ os.environ["PATH"] += (os.pathsep + ffmpeg_dir)
+
+ if not fast_check_ffmpeg():
+ raise ImportError(
+ "FFmpeg is not installed. Please install FFmpeg (including ffmpeg and ffprobe) before running this script. https://ffmpeg.org/download.html"
+ )
+
+ fast_check_args(args)
+
+ # specify configs for inference
+ inference_cfg = partial_fields(InferenceConfig, args.__dict__)
+ crop_cfg = partial_fields(CropConfig, args.__dict__)
+
+ live_portrait_pipeline_animal = LivePortraitPipelineAnimal(
+ inference_cfg=inference_cfg,
+ crop_cfg=crop_cfg
+ )
+
+ # run
+ live_portrait_pipeline_animal.execute(args)
+
+
+if __name__ == "__main__":
+ main()
diff --git a/readme.md b/readme.md
index 83606e5..61707ff 100644
--- a/readme.md
+++ b/readme.md
@@ -39,6 +39,7 @@
## ๐ฅ Updates
+- **`2024/08/02`**: ๐ธ We released a version of the **Animals model**, along with several other updates and improvements. Check out the details [**here**](./assets/docs/changelog/2024-08-02.md)!
- **`2024/07/25`**: ๐ฆ Windows users can now download the package from [HuggingFace](https://huggingface.co/cleardusk/LivePortrait-Windows/tree/main) or [BaiduYun](https://pan.baidu.com/s/1FWsWqKe0eNfXrwjEhhCqlw?pwd=86q2). Simply unzip and double-click `run_windows.bat` to enjoy!
- **`2024/07/24`**: ๐จ We support pose editing for source portraits in the Gradio interface. Weโve also lowered the default detection threshold to increase recall. [Have fun](assets/docs/changelog/2024-07-24.md)!
- **`2024/07/19`**: โจ We support ๐๏ธ **portrait video editing (aka v2v)**! More to see [here](assets/docs/changelog/2024-07-19.md).
@@ -55,7 +56,7 @@ This repo, named **LivePortrait**, contains the official PyTorch implementation
We are actively updating and improving this repository. If you find any bugs or have suggestions, welcome to raise issues or submit pull requests (PR) ๐.
## Getting Started ๐
-### 1. Clone the code and prepare the environment
+### 1. Clone the code and prepare the environment ๐ ๏ธ
```bash
git clone https://github.com/KwaiVGI/LivePortrait
cd LivePortrait
@@ -64,56 +65,42 @@ cd LivePortrait
conda create -n LivePortrait python=3.9
conda activate LivePortrait
-# install dependencies with pip
# for Linux and Windows users
pip install -r requirements.txt
# for macOS with Apple Silicon users
pip install -r requirements_macOS.txt
```
-**Note:** make sure your system has [FFmpeg](https://ffmpeg.org/download.html) installed, including both `ffmpeg` and `ffprobe`!
+> [!Note]
+> Make sure your system has [`git`](https://git-scm.com/), [`conda`](https://anaconda.org/anaconda/conda), and [`FFmpeg`](https://ffmpeg.org/download.html) installed. For details on FFmpeg installation, see [**how to install FFmpeg**](assets/docs/how-to-install-ffmpeg.md).
-### 2. Download pretrained weights
+### 2. Download pretrained weights ๐ฅ
The easiest way to download the pretrained weights is from HuggingFace:
```bash
-# first, ensure git-lfs is installed, see: https://docs.github.com/en/repositories/working-with-files/managing-large-files/installing-git-large-file-storage
-git lfs install
-# clone and move the weights
-git clone https://huggingface.co/KwaiVGI/LivePortrait temp_pretrained_weights
-mv temp_pretrained_weights/* pretrained_weights/
-rm -rf temp_pretrained_weights
+# !pip install -U "huggingface_hub[cli]"
+huggingface-cli download KwaiVGI/LivePortrait --local-dir pretrained_weights --exclude "*.git*" "README.md" "docs"
```
-Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn). Unzip and place them in `./pretrained_weights`.
-
-Ensuring the directory structure is as follows, or contains:
-```text
-pretrained_weights
-โโโ insightface
-โ โโโ models
-โ โโโ buffalo_l
-โ โโโ 2d106det.onnx
-โ โโโ det_10g.onnx
-โโโ liveportrait
- โโโ base_models
- โ โโโ appearance_feature_extractor.pth
- โ โโโ motion_extractor.pth
- โ โโโ spade_generator.pth
- โ โโโ warping_module.pth
- โโโ landmark.onnx
- โโโ retargeting_models
- โโโ stitching_retargeting_module.pth
+If you cannot access to Huggingface, you can use [hf-mirror](https://hf-mirror.com/) to download:
+```bash
+# !pip install -U "huggingface_hub[cli]"
+export HF_ENDPOINT=https://hf-mirror.com
+huggingface-cli download KwaiVGI/LivePortrait --local-dir pretrained_weights --exclude "*.git*" "README.md" "docs"
```
+Alternatively, you can download all pretrained weights from [Google Drive](https://drive.google.com/drive/folders/1UtKgzKjFAOmZkhNK-OYT0caJ_w2XAnib) or [Baidu Yun](https://pan.baidu.com/s/1MGctWmNla_vZxDbEp2Dtzw?pwd=z5cn) (WIP). Unzip and place them in `./pretrained_weights`.
+
+Ensuring the directory structure is as or contains [**this**](assets/docs/directory-structure.md).
+
### 3. Inference ๐
-#### Fast hands-on
+#### Fast hands-on (humans) ๐ค
```bash
-# For Linux and Windows
+# For Linux and Windows users
python inference.py
-# For macOS with Apple Silicon, Intel not supported, this maybe 20x slower than RTX 4090
+# For macOS users with Apple Silicon (Intel is not tested). NOTE: this maybe 20x slower than RTX 4090
PYTORCH_ENABLE_MPS_FALLBACK=1 python inference.py
```
@@ -136,12 +123,32 @@ python inference.py -s assets/examples/source/s13.mp4 -d assets/examples/driving
python inference.py -h
```
+#### Fast hands-on (animals) ๐ฑ๐ถ
+Animals mode is ONLY tested on Linux with NVIDIA GPU.
+
+You need to build an OP named `MultiScaleDeformableAttention` first, which is used by [X-Pose](https://github.com/IDEA-Research/X-Pose), a general keypoint detection framework.
+```bash
+cd src/utils/dependencies/XPose/models/UniPose/ops
+python setup.py build install
+cd - # equal to cd ../../../../../../../
+```
+
+Then
+```bash
+python inference_animal.py -s assets/examples/source/s39.jpg -d assets/examples/driving/wink.pkl --driving_multiplier 1.75 --no_flag_stitching
+```
+If the script runs successfully, you will get an output mp4 file named `animations/s39--wink_concat.mp4`.
+
+
+
+
#### Driving video auto-cropping ๐ข๐ข๐ข
-To use your own driving video, we **recommend**: โฌ๏ธ
- - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
- - Focus on the head area, similar to the example videos.
- - Minimize shoulder movement.
- - Make sure the first frame of driving video is a frontal face with **neutral expression**.
+> [!IMPORTANT]
+> To use your own driving video, we **recommend**: โฌ๏ธ
+> - Crop it to a **1:1** aspect ratio (e.g., 512x512 or 256x256 pixels), or enable auto-cropping by `--flag_crop_driving_video`.
+> - Focus on the head area, similar to the example videos.
+> - Minimize shoulder movement.
+> - Make sure the first frame of driving video is a frontal face with **neutral expression**.
Below is a auto-cropping case by `--flag_crop_driving_video`:
```bash
@@ -163,10 +170,15 @@ We also provide a Gradio
=10.2.0
diff --git a/requirements_macOS.txt b/requirements_macOS.txt
index 1564919..8225548 100644
--- a/requirements_macOS.txt
+++ b/requirements_macOS.txt
@@ -1,2 +1,4 @@
-r requirements_base.txt
+
+--extra-index-url https://download.pytorch.org/whl/cpu
onnxruntime-silicon==1.16.3
diff --git a/src/config/argument_config.py b/src/config/argument_config.py
index 435ab05..bea2d2f 100644
--- a/src/config/argument_config.py
+++ b/src/config/argument_config.py
@@ -13,7 +13,7 @@ from .base_config import PrintableConfig, make_abs_path
@dataclass(repr=False) # use repr from PrintableConfig
class ArgumentConfig(PrintableConfig):
########## input arguments ##########
- source: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s0.jpg') # path to the source portrait or video
+ source: Annotated[str, tyro.conf.arg(aliases=["-s"])] = make_abs_path('../../assets/examples/source/s0.jpg') # path to the source portrait (human/animal) or video (human)
driving: Annotated[str, tyro.conf.arg(aliases=["-d"])] = make_abs_path('../../assets/examples/driving/d0.mp4') # path to driving video or template (.pkl format)
output_dir: Annotated[str, tyro.conf.arg(aliases=["-o"])] = 'animations/' # directory to save output video
@@ -27,10 +27,12 @@ class ArgumentConfig(PrintableConfig):
flag_video_editing_head_rotation: bool = False # when the input is a source video, whether to inherit the relative head rotation from the driving video
flag_eye_retargeting: bool = False # not recommend to be True, WIP; whether to transfer the eyes-open ratio of each driving frame to the source image or the corresponding source frame
flag_lip_retargeting: bool = False # not recommend to be True, WIP; whether to transfer the lip-open ratio of each driving frame to the source image or the corresponding source frame
- flag_stitching: bool = True # recommend to True if head movement is small, False if head movement is large
- flag_relative_motion: bool = True # whether to use relative motion
+ flag_stitching: bool = True # recommend to True if head movement is small, False if head movement is large or the source image is an animal
+ flag_relative_motion: bool = True # whether to use relative motion
flag_pasteback: bool = True # whether to paste-back/stitch the animated face cropping from the face-cropping space to the original image space
flag_do_crop: bool = True # whether to crop the source portrait or video to the face-cropping space
+ driving_option: Literal["expression-friendly", "pose-friendly"] = "expression-friendly" # "expression-friendly" or "pose-friendly"; "expression-friendly" would adapt the driving motion with the global multiplier, and could be used when the source is a human image
+ driving_multiplier: float = 1.0 # be used only when driving_option is "expression-friendly"
driving_smooth_observation_variance: float = 3e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
audio_priority: Literal['source', 'driving'] = 'driving' # whether to use the audio from source or driving video
########## source crop arguments ##########
diff --git a/src/config/crop_config.py b/src/config/crop_config.py
index 6c1f8f2..eaf6cc2 100644
--- a/src/config/crop_config.py
+++ b/src/config/crop_config.py
@@ -6,24 +6,28 @@ parameters used for crop faces
from dataclasses import dataclass
-from .base_config import PrintableConfig
+from .base_config import PrintableConfig, make_abs_path
@dataclass(repr=False) # use repr from PrintableConfig
class CropConfig(PrintableConfig):
- insightface_root: str = "../../pretrained_weights/insightface"
- landmark_ckpt_path: str = "../../pretrained_weights/liveportrait/landmark.onnx"
+ insightface_root: str = make_abs_path("../../pretrained_weights/insightface")
+ landmark_ckpt_path: str = make_abs_path("../../pretrained_weights/liveportrait/landmark.onnx")
+ xpose_config_file_path: str = make_abs_path("../utils/dependencies/XPose/config_model/UniPose_SwinT.py")
+ xpose_embedding_cache_path: str = make_abs_path('../utils/resources/clip_embedding')
+
+ xpose_ckpt_path: str = make_abs_path("../../pretrained_weights/liveportrait_animals/xpose.pth")
device_id: int = 0 # gpu device id
flag_force_cpu: bool = False # force cpu inference, WIP
det_thresh: float = 0.1 # detection threshold
########## source image or video cropping option ##########
dsize: int = 512 # crop size
- scale: float = 2.8 # scale factor
+ scale: float = 2.3 # scale factor
vx_ratio: float = 0 # vx ratio
vy_ratio: float = -0.125 # vy ratio +up, -down
max_face_num: int = 0 # max face number, 0 mean no limit
flag_do_rot: bool = True # whether to conduct the rotation when flag_do_crop is True
-
+ animal_face_type: str = "animal_face_9" # animal_face_68 -> 68 landmark points, animal_face_9 -> 9 landmarks
########## driving video auto cropping option ##########
scale_crop_driving_video: float = 2.2 # 2.0 # scale factor for cropping driving video
vx_ratio_crop_driving_video: float = 0.0 # adjust y offset
diff --git a/src/config/inference_config.py b/src/config/inference_config.py
index aa06203..38f1ecf 100644
--- a/src/config/inference_config.py
+++ b/src/config/inference_config.py
@@ -13,7 +13,7 @@ from .base_config import PrintableConfig, make_abs_path
@dataclass(repr=False) # use repr from PrintableConfig
class InferenceConfig(PrintableConfig):
- # MODEL CONFIG, NOT EXPORTED PARAMS
+ # HUMAN MODEL CONFIG, NOT EXPORTED PARAMS
models_config: str = make_abs_path('./models.yaml') # portrait animation config
checkpoint_F: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
checkpoint_M: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/motion_extractor.pth') # path to checkpoint pf M
@@ -21,6 +21,13 @@ class InferenceConfig(PrintableConfig):
checkpoint_W: str = make_abs_path('../../pretrained_weights/liveportrait/base_models/warping_module.pth') # path to checkpoint of W
checkpoint_S: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip
+ # ANIMAL MODEL CONFIG, NOT EXPORTED PARAMS
+ checkpoint_F_animal: str = make_abs_path('../../pretrained_weights/liveportrait_animals/base_models/appearance_feature_extractor.pth') # path to checkpoint of F
+ checkpoint_M_animal: str = make_abs_path('../../pretrained_weights/liveportrait_animals/base_models/motion_extractor.pth') # path to checkpoint pf M
+ checkpoint_G_animal: str = make_abs_path('../../pretrained_weights/liveportrait_animals/base_models/spade_generator.pth') # path to checkpoint of G
+ checkpoint_W_animal: str = make_abs_path('../../pretrained_weights/liveportrait_animals/base_models/warping_module.pth') # path to checkpoint of W
+ checkpoint_S_animal: str = make_abs_path('../../pretrained_weights/liveportrait/retargeting_models/stitching_retargeting_module.pth') # path to checkpoint to S and R_eyes, R_lip, NOTE: use human temporarily!
+
# EXPORTED PARAMS
flag_use_half_precision: bool = True
flag_crop_driving_video: bool = False
@@ -37,6 +44,8 @@ class InferenceConfig(PrintableConfig):
flag_do_rot: bool = True
flag_force_cpu: bool = False
flag_do_torch_compile: bool = False
+ driving_option: str = "pose-friendly" # "expression-friendly" or "pose-friendly"
+ driving_multiplier: float = 1.0
driving_smooth_observation_variance: float = 3e-7 # smooth strength scalar for the animated video when the input is a source video, the larger the number, the smoother the animated video; too much smoothness would result in loss of motion accuracy
source_max_dim: int = 1280 # the max dim of height and width of source image or video
source_division: int = 2 # make sure the height and width of source image or video can be divided by this number
diff --git a/src/gradio_pipeline.py b/src/gradio_pipeline.py
index 003c5ca..92e72dd 100644
--- a/src/gradio_pipeline.py
+++ b/src/gradio_pipeline.py
@@ -5,16 +5,23 @@ Pipeline for gradio
"""
import os.path as osp
+import os
+import cv2
+from rich.progress import track
import gradio as gr
+import numpy as np
import torch
from .config.argument_config import ArgumentConfig
from .live_portrait_pipeline import LivePortraitPipeline
-from .utils.io import load_img_online
+from .live_portrait_pipeline_animal import LivePortraitPipelineAnimal
+from .utils.io import load_img_online, load_video, resize_to_limit
+from .utils.filter import smooth
from .utils.rprint import rlog as log
from .utils.crop import prepare_paste_back, paste_back
from .utils.camera import get_rotation_matrix
-from .utils.helper import is_square_video
+from .utils.video import get_fps, has_audio_stream, concat_frames, images2video, add_audio_to_video
+from .utils.helper import is_square_video, mkdir, dct2device, basename
from .utils.retargeting_utils import calc_eye_close_ratio, calc_lip_close_ratio
@@ -28,6 +35,8 @@ def update_args(args, user_args):
class GradioPipeline(LivePortraitPipeline):
+ """gradio for human
+ """
def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
super().__init__(inference_cfg, crop_cfg)
@@ -43,6 +52,9 @@ class GradioPipeline(LivePortraitPipeline):
flag_relative_input=True,
flag_do_crop_input=True,
flag_remap_input=True,
+ flag_stitching_input=True,
+ driving_option_input="pose-friendly",
+ driving_multiplier=1.0,
flag_crop_driving_video_input=True,
flag_video_editing_head_rotation=False,
scale=2.3,
@@ -66,8 +78,8 @@ class GradioPipeline(LivePortraitPipeline):
if input_source_path is not None and input_driving_video_path is not None:
if osp.exists(input_driving_video_path) and is_square_video(input_driving_video_path) is False:
flag_crop_driving_video_input = True
- log("The source video is not square, the driving video will be cropped to square automatically.")
- gr.Info("The source video is not square, the driving video will be cropped to square automatically.", duration=2)
+ log("The driving video is not square, it will be cropped to square automatically.")
+ gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
args_user = {
'source': input_source_path,
@@ -75,6 +87,9 @@ class GradioPipeline(LivePortraitPipeline):
'flag_relative_motion': flag_relative_input,
'flag_do_crop': flag_do_crop_input,
'flag_pasteback': flag_remap_input,
+ 'flag_stitching': flag_stitching_input,
+ 'driving_option': driving_option_input,
+ 'driving_multiplier': driving_multiplier,
'flag_crop_driving_video': flag_crop_driving_video_input,
'flag_video_editing_head_rotation': flag_video_editing_head_rotation,
'scale': scale,
@@ -92,19 +107,19 @@ class GradioPipeline(LivePortraitPipeline):
# video driven animation
video_path, video_path_concat = self.execute(self.args)
gr.Info("Run successfully!", duration=2)
- return video_path, video_path_concat,
+ return video_path, video_path_concat
else:
raise gr.Error("Please upload the source portrait or source video, and driving video ๐ค๐ค๐ค", duration=5)
@torch.no_grad()
- def execute_image(self, input_eye_ratio: float, input_lip_ratio: float, input_head_pitch_variation: float, input_head_yaw_variation: float, input_head_roll_variation: float, input_image, retargeting_source_scale: float, flag_do_crop=True):
+ def execute_image_retargeting(self, input_eye_ratio: float, input_lip_ratio: float, input_head_pitch_variation: float, input_head_yaw_variation: float, input_head_roll_variation: float, input_image, retargeting_source_scale: float, flag_do_crop_input_retargeting_image=True):
""" for single image retargeting
"""
if input_head_pitch_variation is None or input_head_yaw_variation is None or input_head_roll_variation is None:
raise gr.Error("Invalid relative pose input ๐ฅ!", duration=5)
# disposable feature
f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb = \
- self.prepare_retargeting(input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop)
+ self.prepare_retargeting_image(input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop=flag_do_crop_input_retargeting_image)
if input_eye_ratio is None or input_lip_ratio is None:
raise gr.Error("Invalid ratio input ๐ฅ!", duration=5)
@@ -134,12 +149,15 @@ class GradioPipeline(LivePortraitPipeline):
# D(W(f_s; x_s, xโฒ_d))
out = self.live_portrait_wrapper.warp_decode(f_s_user, x_s_user, x_d_new)
out = self.live_portrait_wrapper.parse_output(out['out'])[0]
- out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
+ if flag_do_crop_input_retargeting_image:
+ out_to_ori_blend = paste_back(out, crop_M_c2o, img_rgb, mask_ori)
+ else:
+ out_to_ori_blend = out
gr.Info("Run successfully!", duration=2)
return out, out_to_ori_blend
@torch.no_grad()
- def prepare_retargeting(self, input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop=True):
+ def prepare_retargeting_image(self, input_image, input_head_pitch_variation, input_head_yaw_variation, input_head_roll_variation, retargeting_source_scale, flag_do_crop=True):
""" for single image retargeting
"""
if input_image is not None:
@@ -151,11 +169,17 @@ class GradioPipeline(LivePortraitPipeline):
######## process source portrait ########
img_rgb = load_img_online(input_image, mode='rgb', max_dim=1280, n=2)
log(f"Load source image from {input_image}.")
- crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
if flag_do_crop:
+ crop_info = self.cropper.crop_source_image(img_rgb, self.cropper.crop_cfg)
I_s = self.live_portrait_wrapper.prepare_source(crop_info['img_crop_256x256'])
+ source_lmk_user = crop_info['lmk_crop']
+ crop_M_c2o = crop_info['M_c2o']
+ mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
else:
I_s = self.live_portrait_wrapper.prepare_source(img_rgb)
+ source_lmk_user = self.cropper.calc_lmk_from_cropped_image(img_rgb)
+ crop_M_c2o = None
+ mask_ori = None
x_s_info = self.live_portrait_wrapper.get_kp_info(I_s)
x_s_info_user_pitch = x_s_info['pitch'] + input_head_pitch_variation
x_s_info_user_yaw = x_s_info['yaw'] + input_head_yaw_variation
@@ -165,15 +189,12 @@ class GradioPipeline(LivePortraitPipeline):
############################################
f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
x_s_user = self.live_portrait_wrapper.transform_keypoint(x_s_info)
- source_lmk_user = crop_info['lmk_crop']
- crop_M_c2o = crop_info['M_c2o']
- mask_ori = prepare_paste_back(inference_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
return f_s_user, x_s_user, R_s_user, R_d_user, x_s_info, source_lmk_user, crop_M_c2o, mask_ori, img_rgb
else:
# when press the clear button, go here
raise gr.Error("Please upload a source portrait as the retargeting input ๐ค๐ค๐ค", duration=5)
- def init_retargeting(self, retargeting_source_scale: float, input_image = None):
+ def init_retargeting_image(self, retargeting_source_scale: float, input_image = None):
""" initialize the retargeting slider
"""
if input_image != None:
@@ -191,3 +212,194 @@ class GradioPipeline(LivePortraitPipeline):
source_lip_ratio = calc_lip_close_ratio(crop_info['lmk_crop'][None])
return round(float(source_eye_ratio.mean()), 2), round(source_lip_ratio[0][0], 2)
return 0., 0.
+
+ def execute_video_retargeting(self, input_lip_ratio: float, input_video, retargeting_source_scale: float, driving_smooth_observation_variance_retargeting: float, flag_do_crop_input_retargeting_video=True):
+ """ retargeting the lip-open ratio of each source frame
+ """
+ # disposable feature
+ device = self.live_portrait_wrapper.device
+ f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames = \
+ self.prepare_retargeting_video(input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=flag_do_crop_input_retargeting_video)
+
+ if input_lip_ratio is None:
+ raise gr.Error("Invalid ratio input ๐ฅ!", duration=5)
+ else:
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+
+ I_p_pstbk_lst = None
+ if flag_do_crop_input_retargeting_video:
+ I_p_pstbk_lst = []
+ I_p_lst = []
+ for i in track(range(n_frames), description='Retargeting video...', total=n_frames):
+ x_s_user_i = x_s_user_lst[i].to(device)
+ f_s_user_i = f_s_user_lst[i].to(device)
+
+ lip_delta_retargeting = lip_delta_retargeting_lst_smooth[i]
+ x_d_i_new = x_s_user_i + lip_delta_retargeting
+ x_d_i_new = self.live_portrait_wrapper.stitching(x_s_user_i, x_d_i_new)
+ out = self.live_portrait_wrapper.warp_decode(f_s_user_i, x_s_user_i, x_d_i_new)
+ I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
+ I_p_lst.append(I_p_i)
+
+ if flag_do_crop_input_retargeting_video:
+ I_p_pstbk = paste_back(I_p_i, source_M_c2o_lst[i], source_rgb_lst[i], mask_ori_lst[i])
+ I_p_pstbk_lst.append(I_p_pstbk)
+
+ mkdir(self.args.output_dir)
+ flag_source_has_audio = has_audio_stream(input_video)
+
+ ######### build the final concatenation result #########
+ # source frame | generation
+ frames_concatenated = concat_frames(driving_image_lst=None, source_image_lst=img_crop_256x256_lst, I_p_lst=I_p_lst)
+ wfp_concat = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat.mp4')
+ images2video(frames_concatenated, wfp=wfp_concat, fps=source_fps)
+
+ if flag_source_has_audio:
+ # final result with concatenation
+ wfp_concat_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_concat_with_audio.mp4')
+ add_audio_to_video(wfp_concat, input_video, wfp_concat_with_audio)
+ os.replace(wfp_concat_with_audio, wfp_concat)
+ log(f"Replace {wfp_concat_with_audio} with {wfp_concat}")
+
+ # save the animated result
+ wfp = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting.mp4')
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=source_fps)
+ else:
+ images2video(I_p_lst, wfp=wfp, fps=source_fps)
+
+ ######### build the final result #########
+ if flag_source_has_audio:
+ wfp_with_audio = osp.join(self.args.output_dir, f'{basename(input_video)}_retargeting_with_audio.mp4')
+ add_audio_to_video(wfp, input_video, wfp_with_audio)
+ os.replace(wfp_with_audio, wfp)
+ log(f"Replace {wfp_with_audio} with {wfp}")
+ gr.Info("Run successfully!", duration=2)
+ return wfp_concat, wfp
+
+ def prepare_retargeting_video(self, input_video, retargeting_source_scale, device, input_lip_ratio, driving_smooth_observation_variance_retargeting, flag_do_crop=True):
+ """ for video retargeting
+ """
+ if input_video is not None:
+ # gr.Info("Upload successfully!", duration=2)
+ args_user = {'scale': retargeting_source_scale}
+ self.args = update_args(self.args, args_user)
+ self.cropper.update_config(self.args.__dict__)
+ inference_cfg = self.live_portrait_wrapper.inference_cfg
+ ######## process source video ########
+ source_rgb_lst = load_video(input_video)
+ source_rgb_lst = [resize_to_limit(img, inference_cfg.source_max_dim, inference_cfg.source_division) for img in source_rgb_lst]
+ source_fps = int(get_fps(input_video))
+ n_frames = len(source_rgb_lst)
+ log(f"Load source video from {input_video}. FPS is {source_fps}")
+
+ if flag_do_crop:
+ ret_s = self.cropper.crop_source_video(source_rgb_lst, self.cropper.crop_cfg)
+ log(f'Source video is cropped, {len(ret_s["frame_crop_lst"])} frames are processed.')
+ if len(ret_s["frame_crop_lst"]) != n_frames:
+ n_frames = min(len(source_rgb_lst), len(ret_s["frame_crop_lst"]))
+ img_crop_256x256_lst, source_lmk_crop_lst, source_M_c2o_lst = ret_s['frame_crop_lst'], ret_s['lmk_crop_lst'], ret_s['M_c2o_lst']
+ mask_ori_lst = [prepare_paste_back(inference_cfg.mask_crop, source_M_c2o, dsize=(source_rgb_lst[0].shape[1], source_rgb_lst[0].shape[0])) for source_M_c2o in source_M_c2o_lst]
+ else:
+ source_lmk_crop_lst = self.cropper.calc_lmks_from_cropped_video(source_rgb_lst)
+ img_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in source_rgb_lst] # force to resize to 256x256
+ source_M_c2o_lst, mask_ori_lst = None, None
+
+ c_s_eyes_lst, c_s_lip_lst = self.live_portrait_wrapper.calc_ratio(source_lmk_crop_lst)
+ # save the motion template
+ I_s_lst = self.live_portrait_wrapper.prepare_videos(img_crop_256x256_lst)
+ source_template_dct = self.make_motion_template(I_s_lst, c_s_eyes_lst, c_s_lip_lst, output_fps=source_fps)
+
+ c_d_lip_retargeting = [input_lip_ratio]
+ f_s_user_lst, x_s_user_lst, lip_delta_retargeting_lst = [], [], []
+ for i in track(range(n_frames), description='Preparing retargeting video...', total=n_frames):
+ x_s_info = source_template_dct['motion'][i]
+ x_s_info = dct2device(x_s_info, device)
+ x_s_user = x_s_info['x_s']
+
+ source_lmk = source_lmk_crop_lst[i]
+ img_crop_256x256 = img_crop_256x256_lst[i]
+ I_s = I_s_lst[i]
+ f_s_user = self.live_portrait_wrapper.extract_feature_3d(I_s)
+
+ combined_lip_ratio_tensor_retargeting = self.live_portrait_wrapper.calc_combined_lip_ratio(c_d_lip_retargeting, source_lmk)
+ lip_delta_retargeting = self.live_portrait_wrapper.retarget_lip(x_s_user, combined_lip_ratio_tensor_retargeting)
+ f_s_user_lst.append(f_s_user); x_s_user_lst.append(x_s_user); lip_delta_retargeting_lst.append(lip_delta_retargeting.cpu().numpy().astype(np.float32))
+ lip_delta_retargeting_lst_smooth = smooth(lip_delta_retargeting_lst, lip_delta_retargeting_lst[0].shape, device, driving_smooth_observation_variance_retargeting)
+
+
+ return f_s_user_lst, x_s_user_lst, source_lmk_crop_lst, source_M_c2o_lst, mask_ori_lst, source_rgb_lst, img_crop_256x256_lst, lip_delta_retargeting_lst_smooth, source_fps, n_frames
+ else:
+ # when press the clear button, go here
+ raise gr.Error("Please upload a source video as the retargeting input ๐ค๐ค๐ค", duration=5)
+
+class GradioPipelineAnimal(LivePortraitPipelineAnimal):
+ """gradio for animal
+ """
+ def __init__(self, inference_cfg, crop_cfg, args: ArgumentConfig):
+ inference_cfg.flag_crop_driving_video = True # ensure the face_analysis_wrapper is enabled
+ super().__init__(inference_cfg, crop_cfg)
+ # self.live_portrait_wrapper_animal = self.live_portrait_wrapper_animal
+ self.args = args
+
+ @torch.no_grad()
+ def execute_video(
+ self,
+ input_source_image_path=None,
+ input_driving_video_path=None,
+ input_driving_video_pickle_path=None,
+ flag_do_crop_input=False,
+ flag_remap_input=False,
+ driving_multiplier=1.0,
+ flag_stitching=False,
+ flag_crop_driving_video_input=False,
+ scale=2.3,
+ vx_ratio=0.0,
+ vy_ratio=-0.125,
+ scale_crop_driving_video=2.2,
+ vx_ratio_crop_driving_video=0.0,
+ vy_ratio_crop_driving_video=-0.1,
+ tab_selection=None,
+ ):
+ """ for video-driven potrait animation
+ """
+ input_source_path = input_source_image_path
+
+ if tab_selection == 'Video':
+ input_driving_path = input_driving_video_path
+ elif tab_selection == 'Pickle':
+ input_driving_path = input_driving_video_pickle_path
+ else:
+ input_driving_path = input_driving_video_pickle_path
+
+ if input_source_path is not None and input_driving_path is not None:
+ if osp.exists(input_driving_path) and tab_selection == 'Video' and is_square_video(input_driving_path) is False:
+ flag_crop_driving_video_input = True
+ log("The driving video is not square, it will be cropped to square automatically.")
+ gr.Info("The driving video is not square, it will be cropped to square automatically.", duration=2)
+
+ args_user = {
+ 'source': input_source_path,
+ 'driving': input_driving_path,
+ 'flag_do_crop': flag_do_crop_input,
+ 'flag_pasteback': flag_remap_input,
+ 'driving_multiplier': driving_multiplier,
+ 'flag_stitching': flag_stitching,
+ 'flag_crop_driving_video': flag_crop_driving_video_input,
+ 'scale': scale,
+ 'vx_ratio': vx_ratio,
+ 'vy_ratio': vy_ratio,
+ 'scale_crop_driving_video': scale_crop_driving_video,
+ 'vx_ratio_crop_driving_video': vx_ratio_crop_driving_video,
+ 'vy_ratio_crop_driving_video': vy_ratio_crop_driving_video,
+ }
+ # update config from user input
+ self.args = update_args(self.args, args_user)
+ self.live_portrait_wrapper_animal.update_config(self.args.__dict__)
+ self.cropper.update_config(self.args.__dict__)
+ # video driven animation
+ video_path, video_path_concat, video_gif_path = self.execute(self.args)
+ gr.Info("Run successfully!", duration=2)
+ return video_path, video_path_concat, video_gif_path
+ else:
+ raise gr.Error("Please upload the source animal image, and driving video ๐ค๐ค๐ค", duration=5)
diff --git a/src/live_portrait_pipeline.py b/src/live_portrait_pipeline.py
index 683a1ce..7f06d2a 100644
--- a/src/live_portrait_pipeline.py
+++ b/src/live_portrait_pipeline.py
@@ -1,7 +1,7 @@
# coding: utf-8
"""
-Pipeline of LivePortrait
+Pipeline of LivePortrait (Human)
"""
import torch
@@ -21,7 +21,7 @@ from .utils.camera import get_rotation_matrix
from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream
from .utils.crop import prepare_paste_back, paste_back
from .utils.io import load_image_rgb, load_video, resize_to_limit, dump, load
-from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix, is_image, is_square_video
+from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix, is_image, is_square_video, calc_motion_multiplier
from .utils.filter import smooth
from .utils.rprint import rlog as log
# from .utils.viz import viz_lmk
@@ -46,13 +46,13 @@ class LivePortraitPipeline(object):
'motion': [],
'c_eyes_lst': [],
'c_lip_lst': [],
- 'x_i_info_lst': [],
}
for i in track(range(n_frames), description='Making motion templates...', total=n_frames):
# collect s, R, ฮด and t for inference
I_i = I_lst[i]
x_i_info = self.live_portrait_wrapper.get_kp_info(I_i)
+ x_s = self.live_portrait_wrapper.transform_keypoint(x_i_info)
R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll'])
item_dct = {
@@ -60,6 +60,8 @@ class LivePortraitPipeline(object):
'R': R_i.cpu().numpy().astype(np.float32),
'exp': x_i_info['exp'].cpu().numpy().astype(np.float32),
't': x_i_info['t'].cpu().numpy().astype(np.float32),
+ 'kp': x_i_info['kp'].cpu().numpy().astype(np.float32),
+ 'x_s': x_s.cpu().numpy().astype(np.float32),
}
template_dct['motion'].append(item_dct)
@@ -70,7 +72,6 @@ class LivePortraitPipeline(object):
c_lip = c_lip_lst[i].astype(np.float32)
template_dct['c_lip_lst'].append(c_lip)
- template_dct['x_i_info_lst'].append(x_i_info)
return template_dct
@@ -238,18 +239,17 @@ class LivePortraitPipeline(object):
log(f"The animated video consists of {n_frames} frames.")
for i in track(range(n_frames), description='๐Animating...', total=n_frames):
if flag_is_source_video: # source video
- x_s_info_tiny = source_template_dct['motion'][i]
- x_s_info_tiny = dct2device(x_s_info_tiny, device)
+ x_s_info = source_template_dct['motion'][i]
+ x_s_info = dct2device(x_s_info, device)
source_lmk = source_lmk_crop_lst[i]
img_crop_256x256 = img_crop_256x256_lst[i]
I_s = I_s_lst[i]
-
- x_s_info = source_template_dct['x_i_info_lst'][i]
- x_c_s = x_s_info['kp']
- R_s = x_s_info_tiny['R']
f_s = self.live_portrait_wrapper.extract_feature_3d(I_s)
- x_s = self.live_portrait_wrapper.transform_keypoint(x_s_info)
+
+ x_c_s = x_s_info['kp']
+ R_s = x_s_info['R']
+ x_s =x_s_info['x_s']
# let lip-open scalar to be 0 at first if the input is a video
if flag_normalize_lip and inf_cfg.flag_relative_motion and source_lmk is not None:
@@ -308,6 +308,14 @@ class LivePortraitPipeline(object):
t_new[..., 2].fill_(0) # zero tz
x_d_i_new = scale_new * (x_c_s @ R_new + delta_new) + t_new
+ if inf_cfg.driving_option == "expression-friendly" and not flag_is_source_video:
+ if i == 0:
+ x_d_0_new = x_d_i_new
+ motion_multiplier = calc_motion_multiplier(x_s, x_d_0_new)
+ # motion_multiplier *= inf_cfg.driving_multiplier
+ x_d_diff = (x_d_i_new - x_d_0_new) * motion_multiplier
+ x_d_i_new = x_d_diff + x_s
+
# Algorithm 1:
if not inf_cfg.flag_stitching and not inf_cfg.flag_eye_retargeting and not inf_cfg.flag_lip_retargeting:
# without stitching or retargeting
@@ -350,6 +358,7 @@ class LivePortraitPipeline(object):
if inf_cfg.flag_stitching:
x_d_i_new = self.live_portrait_wrapper.stitching(x_s, x_d_i_new)
+ x_d_i_new = x_s + (x_d_i_new - x_s) * inf_cfg.driving_multiplier
out = self.live_portrait_wrapper.warp_decode(f_s, x_s, x_d_i_new)
I_p_i = self.live_portrait_wrapper.parse_output(out['out'])[0]
I_p_lst.append(I_p_i)
@@ -386,7 +395,7 @@ class LivePortraitPipeline(object):
log(f"Audio is selected from {audio_from_which_video}, concat mode")
add_audio_to_video(wfp_concat, audio_from_which_video, wfp_concat_with_audio)
os.replace(wfp_concat_with_audio, wfp_concat)
- log(f"Replace {wfp_concat} with {wfp_concat_with_audio}")
+ log(f"Replace {wfp_concat_with_audio} with {wfp_concat}")
# save the animated result
wfp = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}.mp4')
@@ -402,7 +411,7 @@ class LivePortraitPipeline(object):
log(f"Audio is selected from {audio_from_which_video}")
add_audio_to_video(wfp, audio_from_which_video, wfp_with_audio)
os.replace(wfp_with_audio, wfp)
- log(f"Replace {wfp} with {wfp_with_audio}")
+ log(f"Replace {wfp_with_audio} with {wfp}")
# final log
if wfp_template not in (None, ''):
diff --git a/src/live_portrait_pipeline_animal.py b/src/live_portrait_pipeline_animal.py
new file mode 100644
index 0000000..9e82278
--- /dev/null
+++ b/src/live_portrait_pipeline_animal.py
@@ -0,0 +1,237 @@
+# coding: utf-8
+
+"""
+Pipeline of LivePortrait (Animal)
+"""
+
+import warnings
+warnings.filterwarnings("ignore", message="torch.meshgrid: in an upcoming release, it will be required to pass the indexing argument.")
+warnings.filterwarnings("ignore", message="torch.utils.checkpoint: please pass in use_reentrant=True or use_reentrant=False explicitly.")
+warnings.filterwarnings("ignore", message="None of the inputs have requires_grad=True. Gradients will be None")
+
+import torch
+torch.backends.cudnn.benchmark = True # disable CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR warning
+
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+import numpy as np
+import os
+import os.path as osp
+from rich.progress import track
+
+from .config.argument_config import ArgumentConfig
+from .config.inference_config import InferenceConfig
+from .config.crop_config import CropConfig
+from .utils.cropper import Cropper
+from .utils.camera import get_rotation_matrix
+from .utils.video import images2video, concat_frames, get_fps, add_audio_to_video, has_audio_stream, video2gif
+from .utils.crop import _transform_img, prepare_paste_back, paste_back
+from .utils.io import load_image_rgb, load_video, resize_to_limit, dump, load
+from .utils.helper import mkdir, basename, dct2device, is_video, is_template, remove_suffix, is_image, calc_motion_multiplier
+from .utils.rprint import rlog as log
+# from .utils.viz import viz_lmk
+from .live_portrait_wrapper import LivePortraitWrapperAnimal
+
+
+def make_abs_path(fn):
+ return osp.join(osp.dirname(osp.realpath(__file__)), fn)
+
+class LivePortraitPipelineAnimal(object):
+
+ def __init__(self, inference_cfg: InferenceConfig, crop_cfg: CropConfig):
+ self.live_portrait_wrapper_animal: LivePortraitWrapperAnimal = LivePortraitWrapperAnimal(inference_cfg=inference_cfg)
+ self.cropper: Cropper = Cropper(crop_cfg=crop_cfg, image_type='animal_face', flag_use_half_precision=inference_cfg.flag_use_half_precision)
+
+ def make_motion_template(self, I_lst, **kwargs):
+ n_frames = I_lst.shape[0]
+ template_dct = {
+ 'n_frames': n_frames,
+ 'output_fps': kwargs.get('output_fps', 25),
+ 'motion': [],
+ }
+
+ for i in track(range(n_frames), description='Making driving motion templates...', total=n_frames):
+ # collect s, R, ฮด and t for inference
+ I_i = I_lst[i]
+ x_i_info = self.live_portrait_wrapper_animal.get_kp_info(I_i)
+ R_i = get_rotation_matrix(x_i_info['pitch'], x_i_info['yaw'], x_i_info['roll'])
+
+ item_dct = {
+ 'scale': x_i_info['scale'].cpu().numpy().astype(np.float32),
+ 'R': R_i.cpu().numpy().astype(np.float32),
+ 'exp': x_i_info['exp'].cpu().numpy().astype(np.float32),
+ 't': x_i_info['t'].cpu().numpy().astype(np.float32),
+ }
+
+ template_dct['motion'].append(item_dct)
+
+ return template_dct
+
+ def execute(self, args: ArgumentConfig):
+ # for convenience
+ inf_cfg = self.live_portrait_wrapper_animal.inference_cfg
+ device = self.live_portrait_wrapper_animal.device
+ crop_cfg = self.cropper.crop_cfg
+
+ ######## load source input ########
+ if is_image(args.source):
+ img_rgb = load_image_rgb(args.source)
+ img_rgb = resize_to_limit(img_rgb, inf_cfg.source_max_dim, inf_cfg.source_division)
+ log(f"Load source image from {args.source}")
+ else: # source input is an unknown format
+ raise Exception(f"Unknown source format: {args.source}")
+
+ ######## process driving info ########
+ flag_load_from_template = is_template(args.driving)
+ driving_rgb_crop_256x256_lst = None
+ wfp_template = None
+
+ if flag_load_from_template:
+ # NOTE: load from template, it is fast, but the cropping video is None
+ log(f"Load from template: {args.driving}, NOT the video, so the cropping video and audio are both NULL.", style='bold green')
+ driving_template_dct = load(args.driving)
+ n_frames = driving_template_dct['n_frames']
+
+ # set output_fps
+ output_fps = driving_template_dct.get('output_fps', inf_cfg.output_fps)
+ log(f'The FPS of template: {output_fps}')
+
+ if args.flag_crop_driving_video:
+ log("Warning: flag_crop_driving_video is True, but the driving info is a template, so it is ignored.")
+
+ elif osp.exists(args.driving) and is_video(args.driving):
+ # load from video file, AND make motion template
+ output_fps = int(get_fps(args.driving))
+ log(f"Load driving video from: {args.driving}, FPS is {output_fps}")
+
+ driving_rgb_lst = load_video(args.driving)
+ n_frames = len(driving_rgb_lst)
+
+ ######## make motion template ########
+ log("Start making driving motion template...")
+ if inf_cfg.flag_crop_driving_video:
+ ret_d = self.cropper.crop_driving_video(driving_rgb_lst)
+ log(f'Driving video is cropped, {len(ret_d["frame_crop_lst"])} frames are processed.')
+ if len(ret_d["frame_crop_lst"]) is not n_frames:
+ n_frames = min(n_frames, len(ret_d["frame_crop_lst"]))
+ driving_rgb_crop_lst = ret_d['frame_crop_lst']
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_crop_lst]
+ else:
+ driving_rgb_crop_256x256_lst = [cv2.resize(_, (256, 256)) for _ in driving_rgb_lst] # force to resize to 256x256
+ #######################################
+
+ # save the motion template
+ I_d_lst = self.live_portrait_wrapper_animal.prepare_videos(driving_rgb_crop_256x256_lst)
+ driving_template_dct = self.make_motion_template(I_d_lst, output_fps=output_fps)
+
+ wfp_template = remove_suffix(args.driving) + '.pkl'
+ dump(wfp_template, driving_template_dct)
+ log(f"Dump motion template to {wfp_template}")
+
+ else:
+ raise Exception(f"{args.driving} not exists or unsupported driving info types!")
+
+ ######## prepare for pasteback ########
+ I_p_pstbk_lst = None
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ I_p_pstbk_lst = []
+ log("Prepared pasteback mask done.")
+
+ ######## process source info ########
+ if inf_cfg.flag_do_crop:
+ crop_info = self.cropper.crop_source_image(img_rgb, crop_cfg)
+ if crop_info is None:
+ raise Exception("No animal face detected in the source image!")
+ img_crop_256x256 = crop_info['img_crop_256x256']
+ else:
+ img_crop_256x256 = cv2.resize(img_rgb, (256, 256)) # force to resize to 256x256
+ I_s = self.live_portrait_wrapper_animal.prepare_source(img_crop_256x256)
+ x_s_info = self.live_portrait_wrapper_animal.get_kp_info(I_s)
+ x_c_s = x_s_info['kp']
+ R_s = get_rotation_matrix(x_s_info['pitch'], x_s_info['yaw'], x_s_info['roll'])
+ f_s = self.live_portrait_wrapper_animal.extract_feature_3d(I_s)
+ x_s = self.live_portrait_wrapper_animal.transform_keypoint(x_s_info)
+
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ mask_ori_float = prepare_paste_back(inf_cfg.mask_crop, crop_info['M_c2o'], dsize=(img_rgb.shape[1], img_rgb.shape[0]))
+
+ ######## animate ########
+ I_p_lst = []
+ for i in track(range(n_frames), description='๐Animating...', total=n_frames):
+
+ x_d_i_info = driving_template_dct['motion'][i]
+ x_d_i_info = dct2device(x_d_i_info, device)
+
+ R_d_i = x_d_i_info['R'] if 'R' in x_d_i_info.keys() else x_d_i_info['R_d'] # compatible with previous keys
+ delta_new = x_d_i_info['exp']
+ t_new = x_d_i_info['t']
+ t_new[..., 2].fill_(0) # zero tz
+ scale_new = x_s_info['scale']
+
+ x_d_i = scale_new * (x_c_s @ R_d_i + delta_new) + t_new
+
+ if i == 0:
+ x_d_0 = x_d_i
+ motion_multiplier = calc_motion_multiplier(x_s, x_d_0)
+
+ x_d_diff = (x_d_i - x_d_0) * motion_multiplier
+ x_d_i = x_d_diff + x_s
+
+ if not inf_cfg.flag_stitching:
+ pass
+ else:
+ x_d_i = self.live_portrait_wrapper_animal.stitching(x_s, x_d_i)
+
+ x_d_i = x_s + (x_d_i - x_s) * inf_cfg.driving_multiplier
+ out = self.live_portrait_wrapper_animal.warp_decode(f_s, x_s, x_d_i)
+ I_p_i = self.live_portrait_wrapper_animal.parse_output(out['out'])[0]
+ I_p_lst.append(I_p_i)
+
+ if inf_cfg.flag_pasteback and inf_cfg.flag_do_crop and inf_cfg.flag_stitching:
+ I_p_pstbk = paste_back(I_p_i, crop_info['M_c2o'], img_rgb, mask_ori_float)
+ I_p_pstbk_lst.append(I_p_pstbk)
+
+ mkdir(args.output_dir)
+ wfp_concat = None
+ flag_driving_has_audio = (not flag_load_from_template) and has_audio_stream(args.driving)
+
+ ######### build the final concatenation result #########
+ # driving frame | source image | generation
+ frames_concatenated = concat_frames(driving_rgb_crop_256x256_lst, [img_crop_256x256], I_p_lst)
+ wfp_concat = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat.mp4')
+ images2video(frames_concatenated, wfp=wfp_concat, fps=output_fps)
+
+ if flag_driving_has_audio:
+ # final result with concatenation
+ wfp_concat_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_concat_with_audio.mp4')
+ audio_from_which_video = args.driving
+ add_audio_to_video(wfp_concat, audio_from_which_video, wfp_concat_with_audio)
+ os.replace(wfp_concat_with_audio, wfp_concat)
+ log(f"Replace {wfp_concat_with_audio} with {wfp_concat}")
+
+ # save the animated result
+ wfp = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}.mp4')
+ if I_p_pstbk_lst is not None and len(I_p_pstbk_lst) > 0:
+ images2video(I_p_pstbk_lst, wfp=wfp, fps=output_fps)
+ else:
+ images2video(I_p_lst, wfp=wfp, fps=output_fps)
+
+ ######### build the final result #########
+ if flag_driving_has_audio:
+ wfp_with_audio = osp.join(args.output_dir, f'{basename(args.source)}--{basename(args.driving)}_with_audio.mp4')
+ audio_from_which_video = args.driving
+ add_audio_to_video(wfp, audio_from_which_video, wfp_with_audio)
+ os.replace(wfp_with_audio, wfp)
+ log(f"Replace {wfp_with_audio} with {wfp}")
+
+ # final log
+ if wfp_template not in (None, ''):
+ log(f'Animated template: {wfp_template}, you can specify `-d` argument with this template path next time to avoid cropping video, motion making and protecting privacy.', style='bold green')
+ log(f'Animated video: {wfp}')
+ log(f'Animated video with concat: {wfp_concat}')
+
+ # build the gif
+ wfp_gif = video2gif(wfp)
+ log(f'Animated gif: {wfp_gif}')
+
+
+ return wfp, wfp_concat, wfp_gif
diff --git a/src/live_portrait_wrapper.py b/src/live_portrait_wrapper.py
index 1298f37..a944176 100644
--- a/src/live_portrait_wrapper.py
+++ b/src/live_portrait_wrapper.py
@@ -1,7 +1,7 @@
# coding: utf-8
"""
-Wrapper for LivePortrait core functions
+Wrappers for LivePortrait core functions
"""
import contextlib
@@ -20,6 +20,9 @@ from .utils.rprint import rlog as log
class LivePortraitWrapper(object):
+ """
+ Wrapper for Human
+ """
def __init__(self, inference_cfg: InferenceConfig):
@@ -37,20 +40,20 @@ class LivePortraitWrapper(object):
model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
# init F
self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F, model_config, self.device, 'appearance_feature_extractor')
- log(f'Load appearance_feature_extractor done.')
+ log(f'Load appearance_feature_extractor from {osp.realpath(inference_cfg.checkpoint_F)} done.')
# init M
self.motion_extractor = load_model(inference_cfg.checkpoint_M, model_config, self.device, 'motion_extractor')
- log(f'Load motion_extractor done.')
+ log(f'Load motion_extractor from {osp.realpath(inference_cfg.checkpoint_M)} done.')
# init W
self.warping_module = load_model(inference_cfg.checkpoint_W, model_config, self.device, 'warping_module')
- log(f'Load warping_module done.')
+ log(f'Load warping_module from {osp.realpath(inference_cfg.checkpoint_W)} done.')
# init G
self.spade_generator = load_model(inference_cfg.checkpoint_G, model_config, self.device, 'spade_generator')
- log(f'Load spade_generator done.')
+ log(f'Load spade_generator from {osp.realpath(inference_cfg.checkpoint_G)} done.')
# init S and R
if inference_cfg.checkpoint_S is not None and osp.exists(inference_cfg.checkpoint_S):
self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S, model_config, self.device, 'stitching_retargeting_module')
- log(f'Load stitching_retargeting_module done.')
+ log(f'Load stitching_retargeting_module from {osp.realpath(inference_cfg.checkpoint_S)} done.')
else:
self.stitching_retargeting_module = None
# Optimize for inference
@@ -326,3 +329,50 @@ class LivePortraitWrapper(object):
# [c_s,lip, c_d,lip,i]
combined_lip_ratio_tensor = torch.cat([c_s_lip_tensor, c_d_lip_i_tensor], dim=1) # 1x2
return combined_lip_ratio_tensor
+
+
+class LivePortraitWrapperAnimal(LivePortraitWrapper):
+ """
+ Wrapper for Animal
+ """
+ def __init__(self, inference_cfg: InferenceConfig):
+ # super().__init__(inference_cfg) # ่ฐ็จ็ถ็ฑป็ๅๅงๅๆนๆณ
+
+ self.inference_cfg = inference_cfg
+ self.device_id = inference_cfg.device_id
+ self.compile = inference_cfg.flag_do_torch_compile
+ if inference_cfg.flag_force_cpu:
+ self.device = 'cpu'
+ else:
+ if torch.backends.mps.is_available():
+ self.device = 'mps'
+ else:
+ self.device = 'cuda:' + str(self.device_id)
+
+ model_config = yaml.load(open(inference_cfg.models_config, 'r'), Loader=yaml.SafeLoader)
+ # init F
+ self.appearance_feature_extractor = load_model(inference_cfg.checkpoint_F_animal, model_config, self.device, 'appearance_feature_extractor')
+ log(f'Load appearance_feature_extractor from {osp.realpath(inference_cfg.checkpoint_F_animal)} done.')
+ # init M
+ self.motion_extractor = load_model(inference_cfg.checkpoint_M_animal, model_config, self.device, 'motion_extractor')
+ log(f'Load motion_extractor from {osp.realpath(inference_cfg.checkpoint_M_animal)} done.')
+ # init W
+ self.warping_module = load_model(inference_cfg.checkpoint_W_animal, model_config, self.device, 'warping_module')
+ log(f'Load warping_module from {osp.realpath(inference_cfg.checkpoint_W_animal)} done.')
+ # init G
+ self.spade_generator = load_model(inference_cfg.checkpoint_G_animal, model_config, self.device, 'spade_generator')
+ log(f'Load spade_generator from {osp.realpath(inference_cfg.checkpoint_G_animal)} done.')
+ # init S and R
+ if inference_cfg.checkpoint_S_animal is not None and osp.exists(inference_cfg.checkpoint_S_animal):
+ self.stitching_retargeting_module = load_model(inference_cfg.checkpoint_S_animal, model_config, self.device, 'stitching_retargeting_module')
+ log(f'Load stitching_retargeting_module from {osp.realpath(inference_cfg.checkpoint_S_animal)} done.')
+ else:
+ self.stitching_retargeting_module = None
+
+ # Optimize for inference
+ if self.compile:
+ torch._dynamo.config.suppress_errors = True # Suppress errors and fall back to eager execution
+ self.warping_module = torch.compile(self.warping_module, mode='max-autotune')
+ self.spade_generator = torch.compile(self.spade_generator, mode='max-autotune')
+
+ self.timer = Timer()
diff --git a/src/modules/util.py b/src/modules/util.py
index f83980b..dc6b925 100644
--- a/src/modules/util.py
+++ b/src/modules/util.py
@@ -11,7 +11,8 @@ import torch
import torch.nn.utils.spectral_norm as spectral_norm
import math
import warnings
-
+import collections.abc
+from itertools import repeat
def kp2gaussian(kp, spatial_size, kp_variance):
"""
@@ -439,3 +440,13 @@ class DropPath(nn.Module):
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
+
+# From PyTorch internals
+def _ntuple(n):
+ def parse(x):
+ if isinstance(x, collections.abc.Iterable) and not isinstance(x, str):
+ return tuple(x)
+ return tuple(repeat(x, n))
+ return parse
+
+to_2tuple = _ntuple(2)
diff --git a/src/utils/animal_landmark_runner.py b/src/utils/animal_landmark_runner.py
new file mode 100644
index 0000000..c66efe4
--- /dev/null
+++ b/src/utils/animal_landmark_runner.py
@@ -0,0 +1,138 @@
+# coding: utf-8
+
+"""
+face detectoin and alignment using XPose
+"""
+
+import os
+import pickle
+import torch
+import numpy as np
+from PIL import Image
+from torchvision.ops import nms
+
+from .timer import Timer
+from .rprint import rlog as log
+from .helper import clean_state_dict
+
+from .dependencies.XPose import transforms as T
+from .dependencies.XPose.models import build_model
+from .dependencies.XPose.predefined_keypoints import *
+from .dependencies.XPose.util import box_ops
+from .dependencies.XPose.util.config import Config
+
+
+class XPoseRunner(object):
+ def __init__(self, model_config_path, model_checkpoint_path, embeddings_cache_path=None, cpu_only=False, **kwargs):
+ self.device_id = kwargs.get("device_id", 0)
+ self.flag_use_half_precision = kwargs.get("flag_use_half_precision", True)
+ self.device = f"cuda:{self.device_id}" if not cpu_only else "cpu"
+ self.model = self.load_animal_model(model_config_path, model_checkpoint_path, self.device)
+ self.timer = Timer()
+ # Load cached embeddings if available
+ try:
+ with open(f'{embeddings_cache_path}_9.pkl', 'rb') as f:
+ self.ins_text_embeddings_9, self.kpt_text_embeddings_9 = pickle.load(f)
+ with open(f'{embeddings_cache_path}_68.pkl', 'rb') as f:
+ self.ins_text_embeddings_68, self.kpt_text_embeddings_68 = pickle.load(f)
+ print("Loaded cached embeddings from file.")
+ except Exception:
+ raise ValueError("Could not load clip embeddings from file, please check your file path.")
+
+ def load_animal_model(self, model_config_path, model_checkpoint_path, device):
+ args = Config.fromfile(model_config_path)
+ args.device = device
+ model = build_model(args)
+ checkpoint = torch.load(model_checkpoint_path, map_location=lambda storage, loc: storage)
+ load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
+ model.eval()
+ return model
+
+ def load_image(self, input_image):
+ image_pil = input_image.convert("RGB")
+ transform = T.Compose([
+ T.RandomResize([800], max_size=1333), # NOTE: fixed size to 800
+ T.ToTensor(),
+ T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
+ ])
+ image, _ = transform(image_pil, None)
+ return image_pil, image
+
+ def get_unipose_output(self, image, instance_text_prompt, keypoint_text_prompt, box_threshold, IoU_threshold):
+ instance_list = instance_text_prompt.split(',')
+
+ if len(keypoint_text_prompt) == 9:
+ # torch.Size([1, 512]) torch.Size([9, 512])
+ ins_text_embeddings, kpt_text_embeddings = self.ins_text_embeddings_9, self.kpt_text_embeddings_9
+ elif len(keypoint_text_prompt) ==68:
+ # torch.Size([1, 512]) torch.Size([68, 512])
+ ins_text_embeddings, kpt_text_embeddings = self.ins_text_embeddings_68, self.kpt_text_embeddings_68
+ else:
+ raise ValueError("Invalid number of keypoint embeddings.")
+ target = {
+ "instance_text_prompt": instance_list,
+ "keypoint_text_prompt": keypoint_text_prompt,
+ "object_embeddings_text": ins_text_embeddings.float(),
+ "kpts_embeddings_text": torch.cat((kpt_text_embeddings.float(), torch.zeros(100 - kpt_text_embeddings.shape[0], 512, device=self.device)), dim=0),
+ "kpt_vis_text": torch.cat((torch.ones(kpt_text_embeddings.shape[0], device=self.device), torch.zeros(100 - kpt_text_embeddings.shape[0], device=self.device)), dim=0)
+ }
+
+ self.model = self.model.to(self.device)
+ image = image.to(self.device)
+
+ with torch.no_grad():
+ with torch.autocast(device_type=self.device[:4], dtype=torch.float16, enabled=self.flag_use_half_precision):
+ outputs = self.model(image[None], [target])
+
+ logits = outputs["pred_logits"].sigmoid()[0]
+ boxes = outputs["pred_boxes"][0]
+ keypoints = outputs["pred_keypoints"][0][:, :2 * len(keypoint_text_prompt)]
+
+ logits_filt = logits.cpu().clone()
+ boxes_filt = boxes.cpu().clone()
+ keypoints_filt = keypoints.cpu().clone()
+ filt_mask = logits_filt.max(dim=1)[0] > box_threshold
+ logits_filt = logits_filt[filt_mask]
+ boxes_filt = boxes_filt[filt_mask]
+ keypoints_filt = keypoints_filt[filt_mask]
+
+ keep_indices = nms(box_ops.box_cxcywh_to_xyxy(boxes_filt), logits_filt.max(dim=1)[0], iou_threshold=IoU_threshold)
+
+ filtered_boxes = boxes_filt[keep_indices]
+ filtered_keypoints = keypoints_filt[keep_indices]
+
+ return filtered_boxes, filtered_keypoints
+
+ def run(self, input_image, instance_text_prompt, keypoint_text_example, box_threshold, IoU_threshold):
+ if keypoint_text_example in globals():
+ keypoint_dict = globals()[keypoint_text_example]
+ elif instance_text_prompt in globals():
+ keypoint_dict = globals()[instance_text_prompt]
+ else:
+ keypoint_dict = globals()["animal"]
+
+ keypoint_text_prompt = keypoint_dict.get("keypoints")
+ keypoint_skeleton = keypoint_dict.get("skeleton")
+
+ image_pil, image = self.load_image(input_image)
+ boxes_filt, keypoints_filt = self.get_unipose_output(image, instance_text_prompt, keypoint_text_prompt, box_threshold, IoU_threshold)
+
+ size = image_pil.size
+ H, W = size[1], size[0]
+ keypoints_filt = keypoints_filt[0].squeeze(0)
+ kp = np.array(keypoints_filt.cpu())
+ num_kpts = len(keypoint_text_prompt)
+ Z = kp[:num_kpts * 2] * np.array([W, H] * num_kpts)
+ Z = Z.reshape(num_kpts * 2)
+ x = Z[0::2]
+ y = Z[1::2]
+ return np.stack((x, y), axis=1)
+
+ def warmup(self):
+ self.timer.tic()
+
+ img_rgb = Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
+ self.run(img_rgb, 'face', 'face', box_threshold=0.0, IoU_threshold=0.0)
+
+ elapse = self.timer.toc()
+ log(f'XPoseRunner warmup time: {elapse:.3f}s')
diff --git a/src/utils/crop.py b/src/utils/crop.py
index 065b9f0..fd8b8a4 100644
--- a/src/utils/crop.py
+++ b/src/utils/crop.py
@@ -136,6 +136,29 @@ def parse_pt2_from_pt5(pt5, use_lip=True):
], axis=0)
return pt2
+def parse_pt2_from_pt9(pt9, use_lip=True):
+ '''
+ parsing the 2 points according to the 9 points, which cancels the roll
+ ['right eye right', 'right eye left', 'left eye right', 'left eye left', 'nose tip', 'lip right', 'lip left', 'upper lip', 'lower lip']
+ '''
+ if use_lip:
+ pt9 = np.stack([
+ (pt9[2] + pt9[3]) / 2, # left eye
+ (pt9[0] + pt9[1]) / 2, # right eye
+ pt9[4],
+ (pt9[5] + pt9[6] ) / 2 # lip
+ ], axis=0)
+ pt2 = np.stack([
+ (pt9[0] + pt9[1]) / 2, # eye
+ pt9[3] # lip
+ ], axis=0)
+ else:
+ pt2 = np.stack([
+ (pt9[2] + pt9[3]) / 2,
+ (pt9[0] + pt9[1]) / 2,
+ ], axis=0)
+
+ return pt2
def parse_pt2_from_pt_x(pts, use_lip=True):
if pts.shape[0] == 101:
@@ -151,6 +174,8 @@ def parse_pt2_from_pt_x(pts, use_lip=True):
elif pts.shape[0] > 101:
# take the first 101 points
pt2 = parse_pt2_from_pt101(pts[:101], use_lip=use_lip)
+ elif pts.shape[0] == 9:
+ pt2 = parse_pt2_from_pt9(pts, use_lip=use_lip)
else:
raise Exception(f'Unknow shape: {pts.shape}')
diff --git a/src/utils/cropper.py b/src/utils/cropper.py
index 67cbf26..8b3ac6a 100644
--- a/src/utils/cropper.py
+++ b/src/utils/cropper.py
@@ -1,12 +1,13 @@
# coding: utf-8
import os.path as osp
-from dataclasses import dataclass, field
-from typing import List, Tuple, Union
-
-import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
-import numpy as np
import torch
+import numpy as np
+import cv2; cv2.setNumThreads(0); cv2.ocl.setUseOpenCL(False)
+
+from PIL import Image
+from typing import List, Tuple, Union
+from dataclasses import dataclass, field
from ..config.crop_config import CropConfig
from .crop import (
@@ -18,8 +19,7 @@ from .crop import (
from .io import contiguous
from .rprint import rlog as log
from .face_analysis_diy import FaceAnalysisDIY
-from .landmark_runner import LandmarkRunner
-
+from .human_landmark_runner import LandmarkRunner as HumanLandmark
def make_abs_path(fn):
return osp.join(osp.dirname(osp.realpath(__file__)), fn)
@@ -41,6 +41,7 @@ class Trajectory:
class Cropper(object):
def __init__(self, **kwargs) -> None:
self.crop_cfg: CropConfig = kwargs.get("crop_cfg", None)
+ self.image_type = kwargs.get("image_type", 'human_face')
device_id = kwargs.get("device_id", 0)
flag_force_cpu = kwargs.get("flag_force_cpu", False)
if flag_force_cpu:
@@ -55,20 +56,31 @@ class Cropper(object):
else:
device = "cuda"
face_analysis_wrapper_provider = ["CUDAExecutionProvider"]
- self.landmark_runner = LandmarkRunner(
- ckpt_path=make_abs_path(self.crop_cfg.landmark_ckpt_path),
+
+ self.face_analysis_wrapper = FaceAnalysisDIY(
+ name="buffalo_l",
+ root=self.crop_cfg.insightface_root,
+ providers=face_analysis_wrapper_provider,
+ )
+ self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512), det_thresh=self.crop_cfg.det_thresh)
+ self.face_analysis_wrapper.warmup()
+
+ self.human_landmark_runner = HumanLandmark(
+ ckpt_path=self.crop_cfg.landmark_ckpt_path,
onnx_provider=device,
device_id=device_id,
)
- self.landmark_runner.warmup()
+ self.human_landmark_runner.warmup()
- self.face_analysis_wrapper = FaceAnalysisDIY(
- name="buffalo_l",
- root=make_abs_path(self.crop_cfg.insightface_root),
- providers=face_analysis_wrapper_provider,
- )
- self.face_analysis_wrapper.prepare(ctx_id=device_id, det_size=(512, 512), det_thresh=self.crop_cfg.det_thresh)
- self.face_analysis_wrapper.warmup()
+ if self.image_type == "animal_face":
+ from .animal_landmark_runner import XPoseRunner as AnimalLandmarkRunner
+ self.animal_landmark_runner = AnimalLandmarkRunner(
+ model_config_path=self.crop_cfg.xpose_config_file_path,
+ model_checkpoint_path=self.crop_cfg.xpose_ckpt_path,
+ embeddings_cache_path=self.crop_cfg.xpose_embedding_cache_path,
+ flag_use_half_precision=kwargs.get("flag_use_half_precision", True),
+ )
+ self.animal_landmark_runner.warmup()
def update_config(self, user_args):
for k, v in user_args.items():
@@ -78,24 +90,39 @@ class Cropper(object):
def crop_source_image(self, img_rgb_: np.ndarray, crop_cfg: CropConfig):
# crop a source image and get neccessary information
img_rgb = img_rgb_.copy() # copy it
-
img_bgr = cv2.cvtColor(img_rgb, cv2.COLOR_RGB2BGR)
- src_face = self.face_analysis_wrapper.get(
- img_bgr,
- flag_do_landmark_2d_106=True,
- direction=crop_cfg.direction,
- max_face_num=crop_cfg.max_face_num,
- )
- if len(src_face) == 0:
- log("No face detected in the source image.")
- return None
- elif len(src_face) > 1:
- log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.")
+ if self.image_type == "human_face":
+ src_face = self.face_analysis_wrapper.get(
+ img_bgr,
+ flag_do_landmark_2d_106=True,
+ direction=crop_cfg.direction,
+ max_face_num=crop_cfg.max_face_num,
+ )
- # NOTE: temporarily only pick the first face, to support multiple face in the future
- src_face = src_face[0]
- lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
+ if len(src_face) == 0:
+ log("No face detected in the source image.")
+ return None
+ elif len(src_face) > 1:
+ log(f"More than one face detected in the image, only pick one face by rule {crop_cfg.direction}.")
+
+ # NOTE: temporarily only pick the first face, to support multiple face in the future
+ src_face = src_face[0]
+ lmk = src_face.landmark_2d_106 # this is the 106 landmarks from insightface
+ else:
+ tmp_dct = {
+ 'animal_face_9': 'animal_face',
+ 'animal_face_68': 'face'
+ }
+
+ img_rgb_pil = Image.fromarray(img_rgb)
+ lmk = self.animal_landmark_runner.run(
+ img_rgb_pil,
+ 'face',
+ tmp_dct[crop_cfg.animal_face_type],
+ 0,
+ 0
+ )
# crop the face
ret_dct = crop_image(
@@ -108,12 +135,15 @@ class Cropper(object):
flag_do_rot=crop_cfg.flag_do_rot,
)
- lmk = self.landmark_runner.run(img_rgb, lmk)
- ret_dct["lmk_crop"] = lmk
-
# update a 256x256 version for network input
ret_dct["img_crop_256x256"] = cv2.resize(ret_dct["img_crop"], (256, 256), interpolation=cv2.INTER_AREA)
- ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
+ if self.image_type == "human_face":
+ lmk = self.human_landmark_runner.run(img_rgb, lmk)
+ ret_dct["lmk_crop"] = lmk
+ ret_dct["lmk_crop_256x256"] = ret_dct["lmk_crop"] * 256 / crop_cfg.dsize
+ else:
+ # 68x2 or 9x2
+ ret_dct["lmk_crop"] = lmk
return ret_dct
@@ -131,7 +161,7 @@ class Cropper(object):
log(f"More than one face detected in the image, only pick one face by rule {direction}.")
src_face = src_face[0]
lmk = src_face.landmark_2d_106
- lmk = self.landmark_runner.run(img_rgb_, lmk)
+ lmk = self.human_landmark_runner.run(img_rgb_, lmk)
return lmk
@@ -155,11 +185,11 @@ class Cropper(object):
log(f"More than one face detected in the source frame_{idx}, only pick one face by rule {direction}.")
src_face = src_face[0]
lmk = src_face.landmark_2d_106
- lmk = self.landmark_runner.run(frame_rgb, lmk)
+ lmk = self.human_landmark_runner.run(frame_rgb, lmk)
trajectory.start, trajectory.end = idx, idx
else:
# TODO: add IOU check for tracking
- lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
+ lmk = self.human_landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
trajectory.end = idx
trajectory.lmk_lst.append(lmk)
@@ -174,7 +204,7 @@ class Cropper(object):
vy_ratio=crop_cfg.vy_ratio,
flag_do_rot=crop_cfg.flag_do_rot,
)
- lmk = self.landmark_runner.run(frame_rgb, lmk)
+ lmk = self.human_landmark_runner.run(frame_rgb, lmk)
ret_dct["lmk_crop"] = lmk
# update a 256x256 version for network input
@@ -209,10 +239,10 @@ class Cropper(object):
log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
src_face = src_face[0]
lmk = src_face.landmark_2d_106
- lmk = self.landmark_runner.run(frame_rgb, lmk)
+ lmk = self.human_landmark_runner.run(frame_rgb, lmk)
trajectory.start, trajectory.end = idx, idx
else:
- lmk = self.landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
+ lmk = self.human_landmark_runner.run(frame_rgb, trajectory.lmk_lst[-1])
trajectory.end = idx
trajectory.lmk_lst.append(lmk)
@@ -270,10 +300,10 @@ class Cropper(object):
log(f"More than one face detected in the driving frame_{idx}, only pick one face by rule {direction}.")
src_face = src_face[0]
lmk = src_face.landmark_2d_106
- lmk = self.landmark_runner.run(frame_rgb_crop, lmk)
+ lmk = self.human_landmark_runner.run(frame_rgb_crop, lmk)
trajectory.start, trajectory.end = idx, idx
else:
- lmk = self.landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
+ lmk = self.human_landmark_runner.run(frame_rgb_crop, trajectory.lmk_lst[-1])
trajectory.end = idx
trajectory.lmk_lst.append(lmk)
diff --git a/src/utils/dependencies/XPose/config_model/UniPose_SwinT.py b/src/utils/dependencies/XPose/config_model/UniPose_SwinT.py
new file mode 100644
index 0000000..707b359
--- /dev/null
+++ b/src/utils/dependencies/XPose/config_model/UniPose_SwinT.py
@@ -0,0 +1,125 @@
+_base_ = ['coco_transformer.py']
+
+use_label_enc = True
+
+num_classes=2
+
+lr = 0.0001
+param_dict_type = 'default'
+lr_backbone = 1e-05
+lr_backbone_names = ['backbone.0']
+lr_linear_proj_names = ['reference_points', 'sampling_offsets']
+lr_linear_proj_mult = 0.1
+ddetr_lr_param = False
+batch_size = 2
+weight_decay = 0.0001
+epochs = 12
+lr_drop = 11
+save_checkpoint_interval = 100
+clip_max_norm = 0.1
+onecyclelr = False
+multi_step_lr = False
+lr_drop_list = [33, 45]
+
+
+modelname = 'UniPose'
+frozen_weights = None
+backbone = 'swin_T_224_1k'
+
+
+dilation = False
+position_embedding = 'sine'
+pe_temperatureH = 20
+pe_temperatureW = 20
+return_interm_indices = [1, 2, 3]
+backbone_freeze_keywords = None
+enc_layers = 6
+dec_layers = 6
+unic_layers = 0
+pre_norm = False
+dim_feedforward = 2048
+hidden_dim = 256
+dropout = 0.0
+nheads = 8
+num_queries = 900
+query_dim = 4
+num_patterns = 0
+pdetr3_bbox_embed_diff_each_layer = False
+pdetr3_refHW = -1
+random_refpoints_xy = False
+fix_refpoints_hw = -1
+dabdetr_yolo_like_anchor_update = False
+dabdetr_deformable_encoder = False
+dabdetr_deformable_decoder = False
+use_deformable_box_attn = False
+box_attn_type = 'roi_align'
+dec_layer_number = None
+num_feature_levels = 4
+enc_n_points = 4
+dec_n_points = 4
+decoder_layer_noise = False
+dln_xy_noise = 0.2
+dln_hw_noise = 0.2
+add_channel_attention = False
+add_pos_value = False
+two_stage_type = 'standard'
+two_stage_pat_embed = 0
+two_stage_add_query_num = 0
+two_stage_bbox_embed_share = False
+two_stage_class_embed_share = False
+two_stage_learn_wh = False
+two_stage_default_hw = 0.05
+two_stage_keep_all_tokens = False
+num_select = 50
+transformer_activation = 'relu'
+batch_norm_type = 'FrozenBatchNorm2d'
+masks = False
+
+decoder_sa_type = 'sa' # ['sa', 'ca_label', 'ca_content']
+matcher_type = 'HungarianMatcher' # or SimpleMinsumMatcher
+decoder_module_seq = ['sa', 'ca', 'ffn']
+nms_iou_threshold = -1
+
+dec_pred_bbox_embed_share = True
+dec_pred_class_embed_share = True
+
+
+use_dn = True
+dn_number = 100
+dn_box_noise_scale = 1.0
+dn_label_noise_ratio = 0.5
+dn_label_coef=1.0
+dn_bbox_coef=1.0
+embed_init_tgt = True
+dn_labelbook_size = 2000
+
+match_unstable_error = True
+
+# for ema
+use_ema = True
+ema_decay = 0.9997
+ema_epoch = 0
+
+use_detached_boxes_dec_out = False
+
+max_text_len = 256
+shuffle_type = None
+
+use_text_enhancer = True
+use_fusion_layer = True
+
+use_checkpoint = False # True
+use_transformer_ckpt = True
+text_encoder_type = 'bert-base-uncased'
+
+use_text_cross_attention = True
+text_dropout = 0.0
+fusion_dropout = 0.0
+fusion_droppath = 0.1
+
+num_body_points=68
+binary_query_selection = False
+use_cdn = True
+ffn_extra_layernorm = False
+
+fix_size=False
diff --git a/src/utils/dependencies/XPose/config_model/coco_transformer.py b/src/utils/dependencies/XPose/config_model/coco_transformer.py
new file mode 100644
index 0000000..e7b3fee
--- /dev/null
+++ b/src/utils/dependencies/XPose/config_model/coco_transformer.py
@@ -0,0 +1,8 @@
+data_aug_scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800]
+data_aug_max_size = 1333
+data_aug_scales2_resize = [400, 500, 600]
+data_aug_scales2_crop = [384, 600]
+
+
+data_aug_scale_overlap = None
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/__init__.py b/src/utils/dependencies/XPose/models/UniPose/__init__.py
new file mode 100644
index 0000000..0765963
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/__init__.py
@@ -0,0 +1,10 @@
+# ------------------------------------------------------------------------
+# Conditional DETR
+# Copyright (c) 2021 Microsoft. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Copied from DETR (https://github.com/facebookresearch/detr)
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+# ------------------------------------------------------------------------
+
+from .unipose import build_unipose
diff --git a/src/utils/dependencies/XPose/models/UniPose/attention.py b/src/utils/dependencies/XPose/models/UniPose/attention.py
new file mode 100644
index 0000000..103cf17
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/attention.py
@@ -0,0 +1,373 @@
+# ------------------------------------------------------------------------
+# UniPose
+# url: https://github.com/IDEA-Research/UniPose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Conditional DETR
+# Copyright (c) 2021 Microsoft. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Modified from codes in torch.nn
+# ------------------------------------------------------------------------
+
+"""
+MultiheadAttention that support query, key, and value to have different dimensions.
+Query, key, and value projections are removed.
+
+Mostly copy-paste from https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/activation.py#L873
+and https://github.com/pytorch/pytorch/blob/master/torch/nn/functional.py#L4837
+"""
+
+import warnings
+import torch
+from torch.nn.modules.linear import Linear
+from torch.nn.init import constant_
+from torch.nn.modules.module import Module
+from torch._jit_internal import Optional, Tuple
+try:
+ from torch.overrides import has_torch_function, handle_torch_function
+except:
+ from torch._overrides import has_torch_function, handle_torch_function
+from torch.nn.functional import linear, pad, softmax, dropout
+Tensor = torch.Tensor
+
+class MultiheadAttention(Module):
+ r"""Allows the model to jointly attend to information
+ from different representation subspaces.
+ See reference: Attention Is All You Need
+ .. math::
+ \text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
+ \text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
+ Args:
+ embed_dim: total dimension of the model.
+ num_heads: parallel attention heads.
+ dropout: a Dropout layer on attn_output_weights. Default: 0.0.
+ bias: add bias as module parameter. Default: True.
+ add_bias_kv: add bias to the key and value sequences at dim=0.
+ add_zero_attn: add a new batch of zeros to the key and
+ value sequences at dim=1.
+ kdim: total number of features in key. Default: None.
+ vdim: total number of features in value. Default: None.
+ Note: if kdim and vdim are None, they will be set to embed_dim such that
+ query, key, and value have the same number of features.
+ Examples::
+ >>> multihead_attn = nn.MultiheadAttention(embed_dim, num_heads)
+ >>> attn_output, attn_output_weights = multihead_attn(query, key, value)
+ """
+ bias_k: Optional[torch.Tensor]
+ bias_v: Optional[torch.Tensor]
+
+ def __init__(self, embed_dim, num_heads, dropout=0., bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
+ super(MultiheadAttention, self).__init__()
+ self.embed_dim = embed_dim
+ self.kdim = kdim if kdim is not None else embed_dim
+ self.vdim = vdim if vdim is not None else embed_dim
+ self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
+
+ self.num_heads = num_heads
+ self.dropout = dropout
+ self.head_dim = embed_dim // num_heads
+ assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
+
+ vdim = vdim if vdim is not None else embed_dim
+ self.out_proj = Linear(vdim , vdim)
+
+ self.in_proj_bias = None
+ self.in_proj_weight = None
+ self.bias_k = self.bias_v = None
+ self.q_proj_weight = None
+ self.k_proj_weight = None
+ self.v_proj_weight = None
+
+ self.add_zero_attn = add_zero_attn
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ constant_(self.out_proj.bias, 0.)
+
+ def __setstate__(self, state):
+ # Support loading old MultiheadAttention checkpoints generated by v1.1.0
+ if '_qkv_same_embed_dim' not in state:
+ state['_qkv_same_embed_dim'] = True
+
+ super(MultiheadAttention, self).__setstate__(state)
+
+ def forward(self, query, key, value, key_padding_mask=None,
+ need_weights=True, attn_mask=None):
+ # type: (Tensor, Tensor, Tensor, Optional[Tensor], bool, Optional[Tensor]) -> Tuple[Tensor, Optional[Tensor]]
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ See "Attention Is All You Need" for more details.
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. When given a binary mask and a value is True,
+ the corresponding value on the attention layer will be ignored. When given
+ a byte mask and a value is non-zero, the corresponding value on the attention
+ layer will be ignored
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+ Shape:
+ - Inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the position
+ with the zero positions will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+ 3D mask :math:`(N*\text{num_heads}, L, S)` where N is the batch size, L is the target sequence length,
+ S is the source sequence length. attn_mask ensure that position i is allowed to attend the unmasked
+ positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ is not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+ - Outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+ if not self._qkv_same_embed_dim:
+ return multi_head_attention_forward(
+ query, key, value, self.embed_dim, self.num_heads,
+ self.in_proj_weight, self.in_proj_bias,
+ self.bias_k, self.bias_v, self.add_zero_attn,
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
+ training=self.training,
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
+ attn_mask=attn_mask, use_separate_proj_weight=True,
+ q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
+ v_proj_weight=self.v_proj_weight, out_dim=self.vdim)
+ else:
+ return multi_head_attention_forward(
+ query, key, value, self.embed_dim, self.num_heads,
+ self.in_proj_weight, self.in_proj_bias,
+ self.bias_k, self.bias_v, self.add_zero_attn,
+ self.dropout, self.out_proj.weight, self.out_proj.bias,
+ training=self.training,
+ key_padding_mask=key_padding_mask, need_weights=need_weights,
+ attn_mask=attn_mask, out_dim=self.vdim)
+
+
+def multi_head_attention_forward(query: Tensor,
+ key: Tensor,
+ value: Tensor,
+ embed_dim_to_check: int,
+ num_heads: int,
+ in_proj_weight: Tensor,
+ in_proj_bias: Tensor,
+ bias_k: Optional[Tensor],
+ bias_v: Optional[Tensor],
+ add_zero_attn: bool,
+ dropout_p: float,
+ out_proj_weight: Tensor,
+ out_proj_bias: Tensor,
+ training: bool = True,
+ key_padding_mask: Optional[Tensor] = None,
+ need_weights: bool = True,
+ attn_mask: Optional[Tensor] = None,
+ use_separate_proj_weight: bool = False,
+ q_proj_weight: Optional[Tensor] = None,
+ k_proj_weight: Optional[Tensor] = None,
+ v_proj_weight: Optional[Tensor] = None,
+ static_k: Optional[Tensor] = None,
+ static_v: Optional[Tensor] = None,
+ out_dim: Optional[Tensor] = None
+ ) -> Tuple[Tensor, Optional[Tensor]]:
+ r"""
+ Args:
+ query, key, value: map a query and a set of key-value pairs to an output.
+ See "Attention Is All You Need" for more details.
+ embed_dim_to_check: total dimension of the model.
+ num_heads: parallel attention heads.
+ in_proj_weight, in_proj_bias: input projection weight and bias.
+ bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
+ add_zero_attn: add a new batch of zeros to the key and
+ value sequences at dim=1.
+ dropout_p: probability of an element to be zeroed.
+ out_proj_weight, out_proj_bias: the output projection weight and bias.
+ training: apply dropout if is ``True``.
+ key_padding_mask: if provided, specified padding elements in the key will
+ be ignored by the attention. This is an binary mask. When the value is True,
+ the corresponding value on the attention layer will be filled with -inf.
+ need_weights: output attn_output_weights.
+ attn_mask: 2D or 3D mask that prevents attention to certain positions. A 2D mask will be broadcasted for all
+ the batches while a 3D mask allows to specify a different mask for the entries of each batch.
+ use_separate_proj_weight: the function accept the proj. weights for query, key,
+ and value in different forms. If false, in_proj_weight will be used, which is
+ a combination of q_proj_weight, k_proj_weight, v_proj_weight.
+ q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
+ static_k, static_v: static key and value used for attention operators.
+ Shape:
+ Inputs:
+ - query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
+ the embedding dimension.
+ - key_padding_mask: :math:`(N, S)` where N is the batch size, S is the source sequence length.
+ If a ByteTensor is provided, the non-zero positions will be ignored while the zero positions
+ will be unchanged. If a BoolTensor is provided, the positions with the
+ value of ``True`` will be ignored while the position with the value of ``False`` will be unchanged.
+ - attn_mask: 2D mask :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
+ 3D mask :math:`(N*num_heads, L, S)` where N is the batch size, L is the target sequence length,
+ S is the source sequence length. attn_mask ensures that position i is allowed to attend the unmasked
+ positions. If a ByteTensor is provided, the non-zero positions are not allowed to attend
+ while the zero positions will be unchanged. If a BoolTensor is provided, positions with ``True``
+ are not allowed to attend while ``False`` values will be unchanged. If a FloatTensor
+ is provided, it will be added to the attention weight.
+ - static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+ - static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
+ N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
+ Outputs:
+ - attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
+ E is the embedding dimension.
+ - attn_output_weights: :math:`(N, L, S)` where N is the batch size,
+ L is the target sequence length, S is the source sequence length.
+ """
+ if not torch.jit.is_scripting():
+ tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v,
+ out_proj_weight, out_proj_bias)
+ if any([type(t) is not Tensor for t in tens_ops]) and has_torch_function(tens_ops):
+ return handle_torch_function(
+ multi_head_attention_forward, tens_ops, query, key, value,
+ embed_dim_to_check, num_heads, in_proj_weight, in_proj_bias,
+ bias_k, bias_v, add_zero_attn, dropout_p, out_proj_weight,
+ out_proj_bias, training=training, key_padding_mask=key_padding_mask,
+ need_weights=need_weights, attn_mask=attn_mask,
+ use_separate_proj_weight=use_separate_proj_weight,
+ q_proj_weight=q_proj_weight, k_proj_weight=k_proj_weight,
+ v_proj_weight=v_proj_weight, static_k=static_k, static_v=static_v)
+ tgt_len, bsz, embed_dim = query.size()
+ assert embed_dim == embed_dim_to_check
+ # allow MHA to have different sizes for the feature dimension
+ assert key.size(0) == value.size(0) and key.size(1) == value.size(1)
+
+ head_dim = embed_dim // num_heads
+ v_head_dim = out_dim // num_heads
+ assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
+ scaling = float(head_dim) ** -0.5
+
+ q = query * scaling
+ k = key
+ v = value
+
+ if attn_mask is not None:
+ assert attn_mask.dtype == torch.float32 or attn_mask.dtype == torch.float64 or \
+ attn_mask.dtype == torch.float16 or attn_mask.dtype == torch.uint8 or attn_mask.dtype == torch.bool, \
+ 'Only float, byte, and bool types are supported for attn_mask, not {}'.format(attn_mask.dtype)
+ if attn_mask.dtype == torch.uint8:
+ warnings.warn("Byte tensor for attn_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
+ attn_mask = attn_mask.to(torch.bool)
+
+ if attn_mask.dim() == 2:
+ attn_mask = attn_mask.unsqueeze(0)
+ if list(attn_mask.size()) != [1, query.size(0), key.size(0)]:
+ raise RuntimeError('The size of the 2D attn_mask is not correct.')
+ elif attn_mask.dim() == 3:
+ if list(attn_mask.size()) != [bsz * num_heads, query.size(0), key.size(0)]:
+ raise RuntimeError('The size of the 3D attn_mask is not correct.')
+ else:
+ raise RuntimeError("attn_mask's dimension {} is not supported".format(attn_mask.dim()))
+ # attn_mask's dim is 3 now.
+
+ # convert ByteTensor key_padding_mask to bool
+ if key_padding_mask is not None and key_padding_mask.dtype == torch.uint8:
+ warnings.warn("Byte tensor for key_padding_mask in nn.MultiheadAttention is deprecated. Use bool tensor instead.")
+ key_padding_mask = key_padding_mask.to(torch.bool)
+
+ if bias_k is not None and bias_v is not None:
+ if static_k is None and static_v is None:
+ k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
+ v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
+ if attn_mask is not None:
+ attn_mask = pad(attn_mask, (0, 1))
+ if key_padding_mask is not None:
+ key_padding_mask = pad(key_padding_mask, (0, 1))
+ else:
+ assert static_k is None, "bias cannot be added to static key."
+ assert static_v is None, "bias cannot be added to static value."
+ else:
+ assert bias_k is None
+ assert bias_v is None
+
+ q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
+ if k is not None:
+ k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
+ if v is not None:
+ v = v.contiguous().view(-1, bsz * num_heads, v_head_dim).transpose(0, 1)
+
+ if static_k is not None:
+ assert static_k.size(0) == bsz * num_heads
+ assert static_k.size(2) == head_dim
+ k = static_k
+
+ if static_v is not None:
+ assert static_v.size(0) == bsz * num_heads
+ assert static_v.size(2) == v_head_dim
+ v = static_v
+
+ src_len = k.size(1)
+
+ if key_padding_mask is not None:
+ assert key_padding_mask.size(0) == bsz
+ assert key_padding_mask.size(1) == src_len
+
+ if add_zero_attn:
+ src_len += 1
+ k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
+ v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
+ if attn_mask is not None:
+ attn_mask = pad(attn_mask, (0, 1))
+ if key_padding_mask is not None:
+ key_padding_mask = pad(key_padding_mask, (0, 1))
+
+ attn_output_weights = torch.bmm(q, k.transpose(1, 2))
+ assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
+
+ if attn_mask is not None:
+ if attn_mask.dtype == torch.bool:
+ attn_output_weights.masked_fill_(attn_mask, float('-inf'))
+ else:
+ attn_output_weights += attn_mask
+
+
+ if key_padding_mask is not None:
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+ attn_output_weights = attn_output_weights.masked_fill(
+ key_padding_mask.unsqueeze(1).unsqueeze(2),
+ float('-inf'),
+ )
+ attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
+
+ # attn_output_weights = softmax(
+ # attn_output_weights, dim=-1)
+ attn_output_weights = softmax(
+ attn_output_weights - attn_output_weights.max(dim=-1, keepdim=True)[0], dim=-1)
+ attn_output_weights = dropout(attn_output_weights, p=dropout_p, training=training)
+
+ attn_output = torch.bmm(attn_output_weights, v)
+ assert list(attn_output.size()) == [bsz * num_heads, tgt_len, v_head_dim]
+ attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, out_dim)
+ attn_output = linear(attn_output, out_proj_weight, out_proj_bias)
+
+ if need_weights:
+ # average attention weights over heads
+ attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
+ return attn_output, attn_output_weights.sum(dim=1) / num_heads
+ else:
+ return attn_output, None
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/backbone.py b/src/utils/dependencies/XPose/models/UniPose/backbone.py
new file mode 100644
index 0000000..b2f4c04
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/backbone.py
@@ -0,0 +1,211 @@
+# ------------------------------------------------------------------------
+# UniPose
+# url: https://github.com/IDEA-Research/UniPose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Conditional DETR
+# Copyright (c) 2021 Microsoft. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Copied from DETR (https://github.com/facebookresearch/detr)
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+# ------------------------------------------------------------------------
+
+"""
+Backbone modules.
+"""
+
+import torch
+import torch.nn.functional as F
+import torchvision
+from torch import nn
+from torchvision.models._utils import IntermediateLayerGetter
+from typing import Dict, List
+
+from util.misc import NestedTensor, is_main_process
+
+from .position_encoding import build_position_encoding
+from .swin_transformer import build_swin_transformer
+
+class FrozenBatchNorm2d(torch.nn.Module):
+ """
+ BatchNorm2d where the batch statistics and the affine parameters are fixed.
+
+ Copy-paste from torchvision.misc.ops with added eps before rqsrt,
+ without which any other models than torchvision.models.resnet[18,34,50,101]
+ produce nans.
+ """
+
+ def __init__(self, n):
+ super(FrozenBatchNorm2d, self).__init__()
+ self.register_buffer("weight", torch.ones(n))
+ self.register_buffer("bias", torch.zeros(n))
+ self.register_buffer("running_mean", torch.zeros(n))
+ self.register_buffer("running_var", torch.ones(n))
+
+ def _load_from_state_dict(
+ self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ ):
+ num_batches_tracked_key = prefix + "num_batches_tracked"
+ if num_batches_tracked_key in state_dict:
+ del state_dict[num_batches_tracked_key]
+
+ super(FrozenBatchNorm2d, self)._load_from_state_dict(
+ state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs
+ )
+
+ def forward(self, x):
+ # move reshapes to the beginning
+ # to make it fuser-friendly
+ w = self.weight.reshape(1, -1, 1, 1)
+ b = self.bias.reshape(1, -1, 1, 1)
+ rv = self.running_var.reshape(1, -1, 1, 1)
+ rm = self.running_mean.reshape(1, -1, 1, 1)
+ eps = 1e-5
+ scale = w * (rv + eps).rsqrt()
+ bias = b - rm * scale
+ return x * scale + bias
+
+
+class BackboneBase(nn.Module):
+ def __init__(
+ self,
+ backbone: nn.Module,
+ train_backbone: bool,
+ num_channels: int,
+ return_interm_indices: list,
+ ):
+ super().__init__()
+ for name, parameter in backbone.named_parameters():
+ if (
+ not train_backbone
+ or "layer2" not in name
+ and "layer3" not in name
+ and "layer4" not in name
+ ):
+ parameter.requires_grad_(False)
+
+ return_layers = {}
+ for idx, layer_index in enumerate(return_interm_indices):
+ return_layers.update(
+ {"layer{}".format(5 - len(return_interm_indices) + idx): "{}".format(layer_index)}
+ )
+
+ self.body = IntermediateLayerGetter(backbone, return_layers=return_layers)
+ self.num_channels = num_channels
+
+ def forward(self, tensor_list: NestedTensor):
+ xs = self.body(tensor_list.tensors)
+ out: Dict[str, NestedTensor] = {}
+ for name, x in xs.items():
+ m = tensor_list.mask
+ assert m is not None
+ mask = F.interpolate(m[None].float(), size=x.shape[-2:]).to(torch.bool)[0]
+ out[name] = NestedTensor(x, mask)
+ # import ipdb; ipdb.set_trace()
+ return out
+
+
+class Backbone(BackboneBase):
+ """ResNet backbone with frozen BatchNorm."""
+
+ def __init__(
+ self,
+ name: str,
+ train_backbone: bool,
+ dilation: bool,
+ return_interm_indices: list,
+ batch_norm=FrozenBatchNorm2d,
+ ):
+ if name in ["resnet18", "resnet34", "resnet50", "resnet101"]:
+ backbone = getattr(torchvision.models, name)(
+ replace_stride_with_dilation=[False, False, dilation],
+ pretrained=is_main_process(),
+ norm_layer=batch_norm,
+ )
+ else:
+ raise NotImplementedError("Why you can get here with name {}".format(name))
+ # num_channels = 512 if name in ('resnet18', 'resnet34') else 2048
+ assert name not in ("resnet18", "resnet34"), "Only resnet50 and resnet101 are available."
+ assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
+ num_channels_all = [256, 512, 1024, 2048]
+ num_channels = num_channels_all[4 - len(return_interm_indices) :]
+ super().__init__(backbone, train_backbone, num_channels, return_interm_indices)
+
+
+class Joiner(nn.Sequential):
+ def __init__(self, backbone, position_embedding):
+ super().__init__(backbone, position_embedding)
+
+ def forward(self, tensor_list: NestedTensor):
+ xs = self[0](tensor_list)
+ out: List[NestedTensor] = []
+ pos = []
+ for name, x in xs.items():
+ out.append(x)
+ # position encoding
+ pos.append(self[1](x).to(x.tensors.dtype))
+
+ return out, pos
+
+
+def build_backbone(args):
+ """
+ Useful args:
+ - backbone: backbone name
+ - lr_backbone:
+ - dilation
+ - return_interm_indices: available: [0,1,2,3], [1,2,3], [3]
+ - backbone_freeze_keywords:
+ - use_checkpoint: for swin only for now
+
+ """
+ position_embedding = build_position_encoding(args)
+ train_backbone = True
+ if not train_backbone:
+ raise ValueError("Please set lr_backbone > 0")
+ return_interm_indices = args.return_interm_indices
+ assert return_interm_indices in [[0, 1, 2, 3], [1, 2, 3], [3]]
+ args.backbone_freeze_keywords
+ use_checkpoint = getattr(args, "use_checkpoint", False)
+
+ if args.backbone in ["resnet50", "resnet101"]:
+ backbone = Backbone(
+ args.backbone,
+ train_backbone,
+ args.dilation,
+ return_interm_indices,
+ batch_norm=FrozenBatchNorm2d,
+ )
+ bb_num_channels = backbone.num_channels
+ elif args.backbone in [
+ "swin_T_224_1k",
+ "swin_B_224_22k",
+ "swin_B_384_22k",
+ "swin_L_224_22k",
+ "swin_L_384_22k",
+ ]:
+ pretrain_img_size = int(args.backbone.split("_")[-2])
+ backbone = build_swin_transformer(
+ args.backbone,
+ pretrain_img_size=pretrain_img_size,
+ out_indices=tuple(return_interm_indices),
+ dilation=False,
+ use_checkpoint=use_checkpoint,
+ )
+
+ bb_num_channels = backbone.num_features[4 - len(return_interm_indices) :]
+ else:
+ raise NotImplementedError("Unknown backbone {}".format(args.backbone))
+
+ assert len(bb_num_channels) == len(
+ return_interm_indices
+ ), f"len(bb_num_channels) {len(bb_num_channels)} != len(return_interm_indices) {len(return_interm_indices)}"
+
+ model = Joiner(backbone, position_embedding)
+ model.num_channels = bb_num_channels
+ assert isinstance(
+ bb_num_channels, List
+ ), "bb_num_channels is expected to be a List but {}".format(type(bb_num_channels))
+ return model
diff --git a/src/utils/dependencies/XPose/models/UniPose/deformable_transformer.py b/src/utils/dependencies/XPose/models/UniPose/deformable_transformer.py
new file mode 100644
index 0000000..8f99779
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/deformable_transformer.py
@@ -0,0 +1,1230 @@
+# ------------------------------------------------------------------------
+# UniPose
+# url: https://github.com/IDEA-Research/UniPose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# DINO
+# Copyright (c) 2022 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Modified from DETR (https://github.com/facebookresearch/detr)
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+# ------------------------------------------------------------------------
+
+import math
+import copy
+import torch
+import torch.utils.checkpoint as checkpoint
+from torch import nn, Tensor
+from typing import Optional
+from util.misc import inverse_sigmoid
+
+from .transformer_vanilla import TransformerEncoderLayer
+from .fuse_modules import BiAttentionBlock
+from .utils import gen_encoder_output_proposals, MLP, _get_activation_fn, gen_sineembed_for_position, get_sine_pos_embed
+from .ops.modules import MSDeformAttn
+
+
+class DeformableTransformer(nn.Module):
+
+ def __init__(self, d_model=256, nhead=8,
+ num_queries=300,
+ num_encoder_layers=6,
+ num_unicoder_layers=0,
+ num_decoder_layers=6,
+ dim_feedforward=2048, dropout=0.0,
+ activation="relu", normalize_before=False,
+ return_intermediate_dec=False, query_dim=4,
+ num_patterns=0,
+ modulate_hw_attn=False,
+ # for deformable encoder
+ deformable_encoder=False,
+ deformable_decoder=False,
+ num_feature_levels=1,
+ enc_n_points=4,
+ dec_n_points=4,
+ use_deformable_box_attn=False,
+ box_attn_type='roi_align',
+ # init query
+ learnable_tgt_init=False,
+ decoder_query_perturber=None,
+ add_channel_attention=False,
+ add_pos_value=False,
+ random_refpoints_xy=False,
+ # two stage
+ two_stage_type='no',
+ two_stage_pat_embed=0,
+ two_stage_add_query_num=0,
+ two_stage_learn_wh=False,
+ two_stage_keep_all_tokens=False,
+ # evo of #anchors
+ dec_layer_number=None,
+ rm_enc_query_scale=True,
+ rm_dec_query_scale=True,
+ rm_self_attn_layers=None,
+ key_aware_type=None,
+ # layer share
+ layer_share_type=None,
+ # for detach
+ rm_detach=None,
+ decoder_sa_type='ca',
+ module_seq=['sa', 'ca', 'ffn'],
+ # for dn
+ embed_init_tgt=False,
+
+ use_detached_boxes_dec_out=False,
+ use_text_enhancer=False,
+ use_fusion_layer=False,
+ use_checkpoint=False,
+ use_transformer_ckpt=False,
+ use_text_cross_attention=False,
+ text_dropout=0.1,
+ fusion_dropout=0.1,
+ fusion_droppath=0.0,
+
+ binary_query_selection=False,
+ ffn_extra_layernorm=False,
+ ):
+ super().__init__()
+ self.num_feature_levels = num_feature_levels
+ self.num_encoder_layers = num_encoder_layers
+ self.num_unicoder_layers = num_unicoder_layers
+ self.num_decoder_layers = num_decoder_layers
+ self.deformable_encoder = deformable_encoder
+ self.deformable_decoder = deformable_decoder
+ self.two_stage_keep_all_tokens = two_stage_keep_all_tokens
+ self.num_queries = num_queries
+ self.random_refpoints_xy = random_refpoints_xy
+ self.use_detached_boxes_dec_out = use_detached_boxes_dec_out
+ self.ffn_extra_layernorm = ffn_extra_layernorm
+ assert query_dim == 4
+
+ self.binary_query_selection = binary_query_selection
+ if self.binary_query_selection:
+ self.binary_query_selection_layer = nn.Linear(d_model, 1)
+ # assert not binary_query_selection, 'binary_query_selection not implemented yet'
+
+ if num_feature_levels > 1:
+ assert deformable_encoder, "only support deformable_encoder for num_feature_levels > 1"
+ if use_deformable_box_attn:
+ assert deformable_encoder or deformable_encoder
+
+ assert layer_share_type in [None, 'encoder', 'decoder', 'both']
+ if layer_share_type in ['encoder', 'both']:
+ enc_layer_share = True
+ else:
+ enc_layer_share = False
+ if layer_share_type in ['decoder', 'both']:
+ dec_layer_share = True
+ else:
+ dec_layer_share = False
+ assert layer_share_type is None
+
+ self.decoder_sa_type = decoder_sa_type
+ assert decoder_sa_type in ['sa', 'ca_label', 'ca_content']
+
+ # choose encoder layer type
+ if deformable_encoder:
+ encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
+ dropout, activation,
+ num_feature_levels, nhead, enc_n_points,
+ add_channel_attention=add_channel_attention,
+ use_deformable_box_attn=use_deformable_box_attn,
+ box_attn_type=box_attn_type)
+ else:
+ raise NotImplementedError
+
+ if use_text_enhancer:
+ text_enhance_layer = TransformerEncoderLayer(
+ d_model=d_model,
+ nhead=nhead // 2,
+ dim_feedforward=dim_feedforward // 2,
+ dropout=text_dropout
+ )
+ else:
+ text_enhance_layer = None
+
+ if use_fusion_layer:
+ feature_fusion_layer = BiAttentionBlock(
+ v_dim=d_model,
+ l_dim=d_model,
+ embed_dim=dim_feedforward // 2,
+ num_heads=nhead // 2,
+ dropout=fusion_dropout,
+ drop_path=fusion_droppath
+ )
+ else:
+ feature_fusion_layer = None
+
+ encoder_norm = nn.LayerNorm(d_model) if normalize_before else None
+ assert encoder_norm is None
+ self.encoder = TransformerEncoder(
+ encoder_layer, num_encoder_layers, d_model=d_model,
+ num_queries=num_queries,
+ enc_layer_share=enc_layer_share,
+ text_enhance_layer=text_enhance_layer,
+ feature_fusion_layer=feature_fusion_layer,
+ use_checkpoint=use_checkpoint,
+ use_transformer_ckpt=use_transformer_ckpt,
+ )
+
+ # choose decoder layer type
+ if deformable_decoder:
+ decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
+ dropout, activation,
+ num_feature_levels, nhead, dec_n_points,
+ use_text_cross_attention=use_text_cross_attention,
+ ffn_extra_layernorm=ffn_extra_layernorm, )
+
+ else:
+ raise NotImplementedError
+
+ decoder_norm = nn.LayerNorm(d_model)
+ self.decoder = TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm,
+ return_intermediate=return_intermediate_dec,
+ d_model=d_model, query_dim=query_dim,
+ modulate_hw_attn=modulate_hw_attn,
+ num_feature_levels=num_feature_levels,
+ deformable_decoder=deformable_decoder,
+ decoder_query_perturber=decoder_query_perturber,
+ dec_layer_number=dec_layer_number, rm_dec_query_scale=rm_dec_query_scale,
+ dec_layer_share=dec_layer_share,
+ use_detached_boxes_dec_out=use_detached_boxes_dec_out
+ )
+
+ self.d_model = d_model
+ self.nhead = nhead
+ self.dec_layers = num_decoder_layers
+ self.num_queries = num_queries # useful for single stage model only
+ self.num_patterns = num_patterns
+ if not isinstance(num_patterns, int):
+ Warning("num_patterns should be int but {}".format(type(num_patterns)))
+ self.num_patterns = 0
+
+ if num_feature_levels > 1:
+ if self.num_encoder_layers > 0:
+ self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
+ else:
+ self.level_embed = None
+
+ self.learnable_tgt_init = learnable_tgt_init
+ assert learnable_tgt_init, "why not learnable_tgt_init"
+ self.embed_init_tgt = embed_init_tgt
+ if (two_stage_type != 'no' and embed_init_tgt) or (two_stage_type == 'no'):
+ self.tgt_embed = nn.Embedding(self.num_queries, d_model)
+ nn.init.normal_(self.tgt_embed.weight.data)
+ else:
+ self.tgt_embed = None
+
+ # for two stage
+ self.two_stage_type = two_stage_type
+ self.two_stage_pat_embed = two_stage_pat_embed
+ self.two_stage_add_query_num = two_stage_add_query_num
+ self.two_stage_learn_wh = two_stage_learn_wh
+ assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type)
+ if two_stage_type == 'standard':
+ # anchor selection at the output of encoder
+ self.enc_output = nn.Linear(d_model, d_model)
+ self.enc_output_norm = nn.LayerNorm(d_model)
+
+ if two_stage_pat_embed > 0:
+ self.pat_embed_for_2stage = nn.Parameter(torch.Tensor(two_stage_pat_embed, d_model))
+ nn.init.normal_(self.pat_embed_for_2stage)
+
+ if two_stage_add_query_num > 0:
+ self.tgt_embed = nn.Embedding(self.two_stage_add_query_num, d_model)
+
+ if two_stage_learn_wh:
+ # import ipdb; ipdb.set_trace()
+ self.two_stage_wh_embedding = nn.Embedding(1, 2)
+ else:
+ self.two_stage_wh_embedding = None
+
+ if two_stage_type == 'no':
+ self.init_ref_points(num_queries) # init self.refpoint_embed
+
+ self.enc_out_class_embed = None
+ self.enc_out_bbox_embed = None
+
+ # evolution of anchors
+ self.dec_layer_number = dec_layer_number
+ if dec_layer_number is not None:
+ if self.two_stage_type != 'no' or num_patterns == 0:
+ assert dec_layer_number[
+ 0] == num_queries, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries})"
+ else:
+ assert dec_layer_number[
+ 0] == num_queries * num_patterns, f"dec_layer_number[0]({dec_layer_number[0]}) != num_queries({num_queries}) * num_patterns({num_patterns})"
+
+ self._reset_parameters()
+
+ self.rm_self_attn_layers = rm_self_attn_layers
+ if rm_self_attn_layers is not None:
+ # assert len(rm_self_attn_layers) == num_decoder_layers
+ print("Removing the self-attn in {} decoder layers".format(rm_self_attn_layers))
+ for lid, dec_layer in enumerate(self.decoder.layers):
+ if lid in rm_self_attn_layers:
+ dec_layer.rm_self_attn_modules()
+
+ self.rm_detach = rm_detach
+ if self.rm_detach:
+ assert isinstance(rm_detach, list)
+ assert any([i in ['enc_ref', 'enc_tgt', 'dec'] for i in rm_detach])
+ self.decoder.rm_detach = rm_detach
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+ for m in self.modules():
+ if isinstance(m, MSDeformAttn):
+ m._reset_parameters()
+ if self.num_feature_levels > 1 and self.level_embed is not None:
+ nn.init.normal_(self.level_embed)
+
+ if self.two_stage_learn_wh:
+ nn.init.constant_(self.two_stage_wh_embedding.weight, math.log(0.05 / (1 - 0.05)))
+
+ def get_valid_ratio(self, mask):
+ _, H, W = mask.shape
+ valid_H = torch.sum(~mask[:, :, 0], 1)
+ valid_W = torch.sum(~mask[:, 0, :], 1)
+ valid_ratio_h = valid_H.float() / H
+ valid_ratio_w = valid_W.float() / W
+ valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
+ return valid_ratio
+
+ def init_ref_points(self, use_num_queries):
+ self.refpoint_embed = nn.Embedding(use_num_queries, 4)
+
+ if self.random_refpoints_xy:
+ # import ipdb; ipdb.set_trace()
+ self.refpoint_embed.weight.data[:, :2].uniform_(0, 1)
+ self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2])
+ self.refpoint_embed.weight.data[:, :2].requires_grad = False
+
+ def forward(self, srcs, masks, refpoint_embed, pos_embeds, tgt, attn_mask=None, attn_mask2=None, text_dict=None,
+ dn_meta=None,targets=None,kpt_embed=None):
+ """
+ Input:
+ - srcs: List of multi features [bs, ci, hi, wi]
+ - masks: List of multi masks [bs, hi, wi]
+ - refpoint_embed: [bs, num_dn, 4]. None in infer
+ - pos_embeds: List of multi pos embeds [bs, ci, hi, wi]
+ - tgt: [bs, num_dn, d_model]. None in infer
+
+ """
+ # if self.two_stage_type != 'no' and self.two_stage_add_query_num == 0:
+ # assert refpoint_embed is None
+
+ # prepare input for encoder
+ src_flatten = []
+ mask_flatten = []
+ lvl_pos_embed_flatten = []
+ spatial_shapes = []
+ for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
+ bs, c, h, w = src.shape
+ spatial_shape = (h, w)
+ spatial_shapes.append(spatial_shape)
+
+ src = src.flatten(2).transpose(1, 2) # bs, hw, c
+ mask = mask.flatten(1) # bs, hw
+ pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
+ if self.num_feature_levels > 1 and self.level_embed is not None:
+ lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
+ else:
+ lvl_pos_embed = pos_embed
+ lvl_pos_embed_flatten.append(lvl_pos_embed)
+ src_flatten.append(src)
+ mask_flatten.append(mask)
+ src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
+ mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
+ lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) # bs, \sum{hxw}, c
+ spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
+ level_start_index = torch.cat((spatial_shapes.new_zeros((1,)), spatial_shapes.prod(1).cumsum(0)[:-1]))
+ valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
+
+ # two stage
+ enc_topk_proposals = enc_refpoint_embed = None
+
+ #########################################################
+ # Begin Encoder
+ #########################################################
+ memory, memory_text = self.encoder(
+ src_flatten,
+ pos=lvl_pos_embed_flatten,
+ level_start_index=level_start_index,
+ spatial_shapes=spatial_shapes,
+ valid_ratios=valid_ratios,
+ key_padding_mask=mask_flatten,
+ memory_text=text_dict['encoded_text'],
+ text_attention_mask=~text_dict['text_token_mask'],
+ # we ~ the mask . False means use the token; True means pad the token
+ position_ids=text_dict['position_ids'],
+ text_self_attention_masks=text_dict['text_self_attention_masks'],
+ )
+ #########################################################
+ # End Encoder
+ # - memory: bs, \sum{hw}, c
+ # - mask_flatten: bs, \sum{hw}
+ # - lvl_pos_embed_flatten: bs, \sum{hw}, c
+ # - enc_intermediate_output: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
+ # - enc_intermediate_refpoints: None or (nenc+1, bs, nq, c) or (nenc, bs, nq, c)
+ #########################################################
+ text_dict['encoded_text'] = memory_text
+
+ if self.two_stage_type == 'standard':
+ if self.two_stage_learn_wh:
+ input_hw = self.two_stage_wh_embedding.weight[0]
+ else:
+ input_hw = None
+ output_memory, output_proposals = gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes,
+ input_hw)
+ output_memory = self.enc_output_norm(self.enc_output(output_memory))
+
+ if self.two_stage_pat_embed > 0:
+ bs, nhw, _ = output_memory.shape
+ # output_memory: bs, n, 256; self.pat_embed_for_2stage: k, 256
+ output_memory = output_memory.repeat(1, self.two_stage_pat_embed, 1)
+ _pats = self.pat_embed_for_2stage.repeat_interleave(nhw, 0)
+ output_memory = output_memory + _pats
+ output_proposals = output_proposals.repeat(1, self.two_stage_pat_embed, 1)
+
+ if self.two_stage_add_query_num > 0:
+ assert refpoint_embed is not None
+ output_memory = torch.cat((output_memory, tgt), dim=1)
+ output_proposals = torch.cat((output_proposals, refpoint_embed), dim=1)
+
+ if self.binary_query_selection:
+ topk_logits = self.binary_query_selection_layer(output_memory).squeeze(-1)
+ else:
+ if text_dict is not None:
+ enc_outputs_class_unselected = self.enc_out_class_embed(output_memory, text_dict)
+ else:
+ enc_outputs_class_unselected = self.enc_out_class_embed(output_memory)
+
+ topk_logits = enc_outputs_class_unselected.max(-1)[0]
+ enc_outputs_coord_unselected = self.enc_out_bbox_embed(
+ output_memory) + output_proposals # (bs, \sum{hw}, 4) unsigmoid
+ topk = self.num_queries
+
+ topk_proposals = torch.topk(topk_logits, topk, dim=1)[1] # bs, nq
+
+ # gather boxes
+ refpoint_embed_undetach = torch.gather(enc_outputs_coord_unselected, 1,
+ topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) # unsigmoid
+ refpoint_embed_ = refpoint_embed_undetach.detach()
+ init_box_proposal = torch.gather(output_proposals, 1,
+ topk_proposals.unsqueeze(-1).repeat(1, 1, 4)).sigmoid() # sigmoid
+
+ # gather tgt
+ tgt_undetach = torch.gather(output_memory, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model))
+ if self.embed_init_tgt:
+ tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model
+ else:
+ tgt_ = tgt_undetach.detach()
+
+ if refpoint_embed is not None:
+ refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
+ tgt = torch.cat([tgt, tgt_], dim=1)
+ else:
+ refpoint_embed, tgt = refpoint_embed_, tgt_
+
+ elif self.two_stage_type == 'no':
+ tgt_ = self.tgt_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, d_model
+ refpoint_embed_ = self.refpoint_embed.weight[:, None, :].repeat(1, bs, 1).transpose(0, 1) # nq, bs, 4
+
+ if refpoint_embed is not None:
+ refpoint_embed = torch.cat([refpoint_embed, refpoint_embed_], dim=1)
+ tgt = torch.cat([tgt, tgt_], dim=1)
+ else:
+ refpoint_embed, tgt = refpoint_embed_, tgt_
+
+ if self.num_patterns > 0:
+ tgt_embed = tgt.repeat(1, self.num_patterns, 1)
+ refpoint_embed = refpoint_embed.repeat(1, self.num_patterns, 1)
+ tgt_pat = self.patterns.weight[None, :, :].repeat_interleave(self.num_queries,
+ 1) # 1, n_q*n_pat, d_model
+ tgt = tgt_embed + tgt_pat
+
+ init_box_proposal = refpoint_embed_.sigmoid()
+
+ else:
+ raise NotImplementedError("unknown two_stage_type {}".format(self.two_stage_type))
+ #########################################################
+ # End preparing tgt
+ # - tgt: bs, NQ, d_model
+ # - refpoint_embed(unsigmoid): bs, NQ, d_model
+ #########################################################
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # if refpoint_embed.isnan().any() | refpoint_embed.isinf().any():
+ # import ipdb; ipdb.set_trace()
+ # if tgt.isnan().any() | tgt.isinf().any():
+ # import ipdb; ipdb.set_trace()
+
+ #########################################################
+ # Begin Decoder
+ #########################################################
+ hs, references = self.decoder(
+ tgt=tgt.transpose(0, 1),
+ memory=memory.transpose(0, 1),
+ memory_key_padding_mask=mask_flatten,
+ pos=lvl_pos_embed_flatten.transpose(0, 1),
+ refpoints_unsigmoid=refpoint_embed.transpose(0, 1),
+ level_start_index=level_start_index,
+ spatial_shapes=spatial_shapes,
+ valid_ratios=valid_ratios, tgt_mask=attn_mask,
+ tgt_mask2=attn_mask2,
+ memory_text=text_dict['encoded_text'],
+ text_attention_mask=~text_dict['text_token_mask'],
+ text_dict=text_dict,
+ dn_meta=dn_meta,
+ targets=targets,
+ kpt_embed=kpt_embed
+ # we ~ the mask . False means use the token; True means pad the token
+ )
+ #########################################################
+ # End Decoder
+ # hs: n_dec, bs, nq, d_model
+ # references: n_dec+1, bs, nq, query_dim
+ #########################################################
+
+ #########################################################
+ # Begin postprocess
+ #########################################################
+ if self.two_stage_type == 'standard':
+ if self.two_stage_keep_all_tokens:
+ hs_enc = output_memory.unsqueeze(0)
+ ref_enc = enc_outputs_coord_unselected.unsqueeze(0)
+ init_box_proposal = output_proposals
+ # import ipdb; ipdb.set_trace()
+ else:
+ hs_enc = tgt_undetach.unsqueeze(0)
+ ref_enc = refpoint_embed_undetach.sigmoid().unsqueeze(0)
+ else:
+ hs_enc = ref_enc = None
+ #########################################################
+ # End postprocess
+ # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or (n_enc, bs, nq, d_model) or None
+ # ref_enc: (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or (n_enc, bs, nq, d_model) or None
+ #########################################################
+
+ return hs, references, hs_enc, ref_enc, init_box_proposal
+ # hs: (n_dec, bs, nq, d_model)
+ # references: sigmoid coordinates. (n_dec+1, bs, bq, 4)
+ # hs_enc: (n_enc+1, bs, nq, d_model) or (1, bs, nq, d_model) or None
+ # ref_enc: sigmoid coordinates. \
+ # (n_enc+1, bs, nq, query_dim) or (1, bs, nq, query_dim) or None
+
+
+class TransformerEncoder(nn.Module):
+
+ def __init__(self,
+ encoder_layer, num_layers, d_model=256,
+ num_queries=300,
+ enc_layer_share=False,
+ text_enhance_layer=None,
+ feature_fusion_layer=None,
+ use_checkpoint=False,
+ use_transformer_ckpt=False,
+ ):
+ """_summary_
+
+ Args:
+ encoder_layer (_type_): _description_
+ num_layers (_type_): _description_
+ norm (_type_, optional): _description_. Defaults to None.
+ d_model (int, optional): _description_. Defaults to 256.
+ num_queries (int, optional): _description_. Defaults to 300.
+ enc_layer_share (bool, optional): _description_. Defaults to False.
+
+ """
+ super().__init__()
+ # prepare layers
+ self.layers = []
+ self.text_layers = []
+ self.fusion_layers = []
+ if num_layers > 0:
+ self.layers = _get_clones(encoder_layer, num_layers, layer_share=enc_layer_share)
+
+ if text_enhance_layer is not None:
+ self.text_layers = _get_clones(text_enhance_layer, num_layers, layer_share=enc_layer_share)
+ if feature_fusion_layer is not None:
+ self.fusion_layers = _get_clones(feature_fusion_layer, num_layers, layer_share=enc_layer_share)
+ else:
+ self.layers = []
+ del encoder_layer
+
+ if text_enhance_layer is not None:
+ self.text_layers = []
+ del text_enhance_layer
+ if feature_fusion_layer is not None:
+ self.fusion_layers = []
+ del feature_fusion_layer
+
+ self.query_scale = None
+ self.num_queries = num_queries
+ self.num_layers = num_layers
+ self.d_model = d_model
+
+ self.use_checkpoint = use_checkpoint
+ self.use_transformer_ckpt = use_transformer_ckpt
+
+ @staticmethod
+ def get_reference_points(spatial_shapes, valid_ratios, device):
+ reference_points_list = []
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
+ ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
+ torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device),)
+ ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
+ ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
+ ref = torch.stack((ref_x, ref_y), -1)
+ reference_points_list.append(ref)
+ reference_points = torch.cat(reference_points_list, 1)
+ reference_points = reference_points[:, :, None] * valid_ratios[:, None]
+ return reference_points
+
+ def forward(self,
+ # for images
+ src: Tensor,
+ pos: Tensor,
+ spatial_shapes: Tensor,
+ level_start_index: Tensor,
+ valid_ratios: Tensor,
+ key_padding_mask: Tensor,
+ # for texts
+ memory_text: Tensor = None,
+ text_attention_mask: Tensor = None,
+ pos_text: Tensor = None,
+ text_self_attention_masks: Tensor = None,
+ position_ids: Tensor = None,
+ ):
+ """
+ Input:
+ - src: [bs, sum(hi*wi), 256]
+ - pos: pos embed for src. [bs, sum(hi*wi), 256]
+ - spatial_shapes: h,w of each level [num_level, 2]
+ - level_start_index: [num_level] start point of level in sum(hi*wi).
+ - valid_ratios: [bs, num_level, 2]
+ - key_padding_mask: [bs, sum(hi*wi)]
+
+ - memory_text: bs, n_text, 256
+ - text_attention_mask: bs, n_text
+ False for no padding; True for padding
+ - pos_text: bs, n_text, 256
+
+ - position_ids: bs, n_text
+ Intermedia:
+ - reference_points: [bs, sum(hi*wi), num_level, 2]
+ Outpus:
+ - output: [bs, sum(hi*wi), 256]
+ """
+
+ output = src
+
+ # preparation and reshape
+ if self.num_layers > 0:
+ reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
+
+ if self.text_layers:
+ # generate pos_text
+ bs, n_text, text_dim = memory_text.shape
+ if pos_text is None and position_ids is None:
+ pos_text = torch.arange(n_text, device=memory_text.device).float().unsqueeze(0).unsqueeze(-1).repeat(bs,
+ 1,
+ 1)
+ pos_text = get_sine_pos_embed(pos_text, num_pos_feats=256, exchange_xy=False)
+ if position_ids is not None:
+ pos_text = get_sine_pos_embed(position_ids[..., None], num_pos_feats=256, exchange_xy=False)
+
+ # main process
+ for layer_id, layer in enumerate(self.layers):
+ # if output.isnan().any() or memory_text.isnan().any():
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+ if self.fusion_layers:
+ if self.use_checkpoint:
+ output, memory_text = checkpoint.checkpoint(
+ self.fusion_layers[layer_id],
+ output,
+ memory_text,
+ key_padding_mask,
+ text_attention_mask
+ )
+ else:
+ output, memory_text = self.fusion_layers[layer_id](v=output, l=memory_text,
+ attention_mask_v=key_padding_mask,
+ attention_mask_l=text_attention_mask)
+
+ if self.text_layers:
+ memory_text = self.text_layers[layer_id](
+ src=memory_text.transpose(0, 1),
+ src_mask=~text_self_attention_masks, # note we use ~ for mask here
+ src_key_padding_mask=text_attention_mask,
+ pos=(pos_text.transpose(0, 1) if pos_text is not None else None)
+ ).transpose(0, 1)
+
+ # main process
+ if self.use_transformer_ckpt:
+ output = checkpoint.checkpoint(
+ layer,
+ output,
+ pos,
+ reference_points,
+ spatial_shapes,
+ level_start_index,
+ key_padding_mask
+ )
+ else:
+ output = layer(src=output, pos=pos, reference_points=reference_points, spatial_shapes=spatial_shapes,
+ level_start_index=level_start_index, key_padding_mask=key_padding_mask)
+
+ return output, memory_text
+
+
+class TransformerDecoder(nn.Module):
+
+ def __init__(self, decoder_layer, num_layers, norm=None,
+ return_intermediate=False,
+ d_model=256, query_dim=4,
+ modulate_hw_attn=False,
+ num_feature_levels=1,
+ deformable_decoder=False,
+ decoder_query_perturber=None,
+ dec_layer_number=None, # number of queries each layer in decoder
+ rm_dec_query_scale=False,
+ dec_layer_share=False,
+ dec_layer_dropout_prob=None,
+ use_detached_boxes_dec_out=False,
+ num_box_decoder_layers=2,
+ num_body_points=68,
+ ):
+ super().__init__()
+ if num_layers > 0:
+ self.layers = _get_clones(decoder_layer, num_layers, layer_share=dec_layer_share)
+ else:
+ self.layers = []
+ self.num_layers = num_layers
+ self.norm = norm
+ self.return_intermediate = return_intermediate
+ assert return_intermediate, "support return_intermediate only"
+ self.query_dim = query_dim
+ assert query_dim in [2, 4], "query_dim should be 2/4 but {}".format(query_dim)
+ self.num_feature_levels = num_feature_levels
+ self.use_detached_boxes_dec_out = use_detached_boxes_dec_out
+
+ self.ref_point_head = MLP(query_dim // 2 * d_model, d_model, d_model, 2)
+ if not deformable_decoder:
+ self.query_pos_sine_scale = MLP(d_model, d_model, d_model, 2)
+ else:
+ self.query_pos_sine_scale = None
+
+ if rm_dec_query_scale:
+ self.query_scale = None
+ else:
+ raise NotImplementedError
+ self.query_scale = MLP(d_model, d_model, d_model, 2)
+ self.bbox_embed = None
+ self.class_embed = None
+ self.pose_embed = None
+ self.pose_hw_embed = None
+ self.d_model = d_model
+ self.modulate_hw_attn = modulate_hw_attn
+ self.deformable_decoder = deformable_decoder
+
+ if not deformable_decoder and modulate_hw_attn:
+ self.ref_anchor_head = MLP(d_model, d_model, 2, 2)
+ else:
+ self.ref_anchor_head = None
+
+ self.decoder_query_perturber = decoder_query_perturber
+ self.box_pred_damping = None
+
+ self.dec_layer_number = dec_layer_number
+ if dec_layer_number is not None:
+ assert isinstance(dec_layer_number, list)
+ assert len(dec_layer_number) == num_layers
+ # assert dec_layer_number[0] ==
+
+ self.dec_layer_dropout_prob = dec_layer_dropout_prob
+ if dec_layer_dropout_prob is not None:
+ assert isinstance(dec_layer_dropout_prob, list)
+ assert len(dec_layer_dropout_prob) == num_layers
+ for i in dec_layer_dropout_prob:
+ assert 0.0 <= i <= 1.0
+
+ self.rm_detach = None
+ self.num_body_points = num_body_points
+
+ self.hw = nn.Embedding(17, 2)
+ self.num_box_decoder_layers = num_box_decoder_layers
+ self.kpt_index = [x for x in range(50 * (self.num_body_points + 1)) if x % (self.num_body_points + 1) != 0]
+ self.hw_append = nn.Embedding(self.num_body_points-17, 2)
+
+ def forward(self, tgt, memory,
+ tgt_mask: Optional[Tensor] = None,
+ tgt_mask2: Optional[Tensor] = None,
+ memory_mask: Optional[Tensor] = None,
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ memory_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ refpoints_unsigmoid: Optional[Tensor] = None, # num_queries, bs, 2
+ # for memory
+ level_start_index: Optional[Tensor] = None, # num_levels
+ spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
+ valid_ratios: Optional[Tensor] = None,
+ # for text
+ memory_text: Optional[Tensor] = None,
+ text_attention_mask: Optional[Tensor] = None,
+ text_dict: Optional[Tensor] = None,
+ dn_meta: Optional[Tensor] = None,
+ targets: Optional[Tensor] = None,
+ kpt_embed: Optional[Tensor] = None
+ ):
+ """
+ Input:
+ - tgt: nq, bs, d_model
+ - memory: hw, bs, d_model
+ - pos: hw, bs, d_model
+ - refpoints_unsigmoid: nq, bs, 2/4
+ - valid_ratios/spatial_shapes: bs, nlevel, 2
+ """
+
+ output = tgt
+ output += self.hw.weight[0, 0] * 0.0
+
+
+ intermediate = []
+ reference_points = refpoints_unsigmoid.sigmoid()
+ ref_points = [reference_points]
+ effect_num_dn = dn_meta['pad_size'] if self.training else 0
+ inter_select_number = 50
+ for layer_id, layer in enumerate(self.layers):
+
+ if reference_points.shape[-1] == 4:
+ reference_points_input = reference_points[:, :, None] \
+ * torch.cat([valid_ratios, valid_ratios], -1)[None, :] # nq, bs, nlevel, 4
+ else:
+ assert reference_points.shape[-1] == 2
+ reference_points_input = reference_points[:, :, None] * valid_ratios[None, :]
+ query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # nq, bs, 256*2
+
+ # conditional query
+ raw_query_pos = self.ref_point_head(query_sine_embed) # nq, bs, 256
+ pos_scale = self.query_scale(output) if self.query_scale is not None else 1
+ query_pos = pos_scale * raw_query_pos
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # if query_pos.isnan().any() | query_pos.isinf().any():
+ # import ipdb; ipdb.set_trace()
+
+ # main process
+ output = layer(
+ tgt=output,
+ tgt_query_pos=query_pos,
+ tgt_query_sine_embed=query_sine_embed,
+ tgt_key_padding_mask=tgt_key_padding_mask,
+ tgt_reference_points=reference_points_input,
+
+ memory_text=memory_text,
+ text_attention_mask=text_attention_mask,
+
+ memory=memory,
+ memory_key_padding_mask=memory_key_padding_mask,
+ memory_level_start_index=level_start_index,
+ memory_spatial_shapes=spatial_shapes,
+ memory_pos=pos,
+
+ self_attn_mask=tgt_mask,
+ cross_attn_mask=memory_mask
+ )
+ if output.isnan().any() | output.isinf().any():
+ print(f"output layer_id {layer_id} is nan")
+ try:
+ num_nan = output.isnan().sum().item()
+ num_inf = output.isinf().sum().item()
+ print(f"num_nan {num_nan}, num_inf {num_inf}")
+ except Exception as e:
+ print(e)
+
+
+
+
+ intermediate.append(self.norm(output))
+ # iter update
+ if layer_id < self.num_box_decoder_layers:
+ reference_before_sigmoid = inverse_sigmoid(reference_points)
+ delta_unsig = self.bbox_embed[layer_id](output)
+ outputs_unsig = delta_unsig + reference_before_sigmoid
+ new_reference_points = outputs_unsig.sigmoid()
+
+ # select # ref points as anchors
+ if layer_id == self.num_box_decoder_layers - 1:
+ dn_output = output[:effect_num_dn]
+ dn_new_reference_points = new_reference_points[:effect_num_dn]
+ class_unselected = self.class_embed[layer_id](output.transpose(0, 1), text_dict)[:,
+ effect_num_dn:].transpose(0, 1)
+ topk_proposals = torch.topk(class_unselected.max(-1)[0], inter_select_number, dim=0)[1]
+ new_reference_points_for_box = torch.gather(new_reference_points[effect_num_dn:], 0,
+ topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
+ new_output_for_box = torch.gather(output[effect_num_dn:], 0,
+ topk_proposals.unsqueeze(-1).repeat(1, 1, self.d_model))
+ keypoint_embed=kpt_embed.transpose(0, 1)
+
+ new_output_for_keypoint = keypoint_embed[None, :, :, :].repeat(new_output_for_box.shape[0],1,1,1)
+ delta_xy = self.pose_embed[-1](new_output_for_keypoint)[..., :2]
+ keypoint_xy = (inverse_sigmoid(new_reference_points_for_box[..., :2][:, None]) + delta_xy).sigmoid()
+ num_queries, _, bs, _ = keypoint_xy.shape
+ aa = torch.cat((self.hw.weight,self.hw_append.weight),dim=0)
+ keypoint_wh_weight = aa.unsqueeze(0).unsqueeze(-2).repeat(num_queries, 1, bs, 1).sigmoid()
+ keypoint_wh = keypoint_wh_weight * new_reference_points_for_box[..., 2:][:, None]
+ new_reference_points_for_keypoint = torch.cat((keypoint_xy, keypoint_wh), dim=-1)
+ new_reference_points = torch.cat(
+ (new_reference_points_for_box.unsqueeze(1), new_reference_points_for_keypoint), dim=1).flatten(0, 1)
+ output = torch.cat((new_output_for_box.unsqueeze(1), new_output_for_keypoint), dim=1).flatten(0, 1)
+ new_reference_points = torch.cat((dn_new_reference_points, new_reference_points), dim=0)
+ output = torch.cat((dn_output, output), dim=0)
+ tgt_mask = tgt_mask2
+
+ if layer_id >= self.num_box_decoder_layers:
+ reference_before_sigmoid = inverse_sigmoid(reference_points)
+ output_bbox_dn = output[:effect_num_dn]
+ output_bbox_norm = output[effect_num_dn:][0::(self.num_body_points + 1)]
+ reference_before_sigmoid_bbox_dn = reference_before_sigmoid[:effect_num_dn]
+ reference_before_sigmoid_bbox_norm = reference_before_sigmoid[effect_num_dn:][
+ 0::(self.num_body_points + 1)]
+ delta_unsig_dn = self.bbox_embed[layer_id](output_bbox_dn)
+ delta_unsig_norm = self.bbox_embed[layer_id](output_bbox_norm)
+ outputs_unsig_dn = delta_unsig_dn + reference_before_sigmoid_bbox_dn
+ outputs_unsig_norm = delta_unsig_norm + reference_before_sigmoid_bbox_norm
+ new_reference_points_for_box_dn = outputs_unsig_dn.sigmoid()
+ new_reference_points_for_box_norm = outputs_unsig_norm.sigmoid()
+ output_kpt = output[effect_num_dn:].index_select(0, torch.tensor(self.kpt_index, device=output.device))
+ delta_xy_unsig = self.pose_embed[layer_id - self.num_box_decoder_layers](output_kpt)
+ outputs_unsig = reference_before_sigmoid[effect_num_dn:].index_select(0, torch.tensor(self.kpt_index,
+ device=output.device)).clone() ##
+ delta_hw_unsig = self.pose_hw_embed[layer_id - self.num_box_decoder_layers](output_kpt)
+ outputs_unsig[..., :2] += delta_xy_unsig[..., :2]
+ outputs_unsig[..., 2:] += delta_hw_unsig
+ new_reference_points_for_keypoint = outputs_unsig.sigmoid()
+ bs = new_reference_points_for_box_norm.shape[1]
+ new_reference_points_norm = torch.cat((new_reference_points_for_box_norm.unsqueeze(1),
+ new_reference_points_for_keypoint.view(-1, self.num_body_points,
+ bs, 4)), dim=1).flatten(0,
+ 1)
+ new_reference_points = torch.cat((new_reference_points_for_box_dn, new_reference_points_norm), dim=0)
+
+ if self.rm_detach and 'dec' in self.rm_detach:
+ reference_points = new_reference_points
+ else:
+ reference_points = new_reference_points.detach()
+
+ # if layer_id != self.num_layers - 1:
+ if self.use_detached_boxes_dec_out:
+ ref_points.append(reference_points)
+ else:
+ ref_points.append(new_reference_points)
+
+ return [
+ [itm_out.transpose(0, 1) for itm_out in intermediate],
+ [itm_refpoint.transpose(0, 1) for itm_refpoint in ref_points]
+ ]
+
+
+class DeformableTransformerEncoderLayer(nn.Module):
+ def __init__(self,
+ d_model=256, d_ffn=1024,
+ dropout=0.1, activation="relu",
+ n_levels=4, n_heads=8, n_points=4,
+ add_channel_attention=False,
+ use_deformable_box_attn=False,
+ box_attn_type='roi_align',
+ ):
+ super().__init__()
+
+ # self attention
+ self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ self.dropout1 = nn.Dropout(dropout)
+ self.norm1 = nn.LayerNorm(d_model)
+
+ # ffn
+ self.linear1 = nn.Linear(d_model, d_ffn)
+ self.activation = _get_activation_fn(activation, d_model=d_ffn)
+ self.dropout2 = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(d_ffn, d_model)
+ self.dropout3 = nn.Dropout(dropout)
+ self.norm2 = nn.LayerNorm(d_model)
+
+ # channel attention
+ self.add_channel_attention = add_channel_attention
+ if add_channel_attention:
+ self.activ_channel = _get_activation_fn('dyrelu', d_model=d_model)
+ self.norm_channel = nn.LayerNorm(d_model)
+
+ @staticmethod
+ def with_pos_embed(tensor, pos):
+ return tensor if pos is None else tensor + pos
+
+ def forward_ffn(self, src):
+ src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
+ src = src + self.dropout3(src2)
+ src = self.norm2(src)
+ return src
+
+ def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None):
+ # self attention
+ # import ipdb; ipdb.set_trace()
+ src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index,
+ key_padding_mask)
+ src = src + self.dropout1(src2)
+ src = self.norm1(src)
+
+ # ffn
+ src = self.forward_ffn(src)
+
+ # channel attn
+ if self.add_channel_attention:
+ src = self.norm_channel(src + self.activ_channel(src))
+
+ return src
+
+
+class DeformableTransformerDecoderLayer(nn.Module):
+ def __init__(self, d_model=256, d_ffn=1024,
+ dropout=0.1, activation="relu",
+ n_levels=4, n_heads=8, n_points=4,
+ use_text_feat_guide=False,
+ use_text_cross_attention=False,
+ ffn_extra_layernorm=False
+ ):
+ super().__init__()
+
+ # cross attention
+ # self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ self.dropout1 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
+ self.norm1 = nn.LayerNorm(d_model)
+
+ # cross attention text
+ if use_text_cross_attention:
+ self.ca_text = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
+ self.catext_dropout = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
+ self.catext_norm = nn.LayerNorm(d_model)
+
+ # self attention
+ self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
+ self.dropout2 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
+ self.norm2 = nn.LayerNorm(d_model)
+
+ # ffn
+ self.linear1 = nn.Linear(d_model, d_ffn)
+ self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
+ self.dropout3 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
+ self.linear2 = nn.Linear(d_ffn, d_model)
+ self.dropout4 = nn.Dropout(dropout) if dropout > 0 else nn.Identity()
+ self.norm3 = nn.LayerNorm(d_model)
+ if ffn_extra_layernorm:
+ raise NotImplementedError('ffn_extra_layernorm not implemented')
+ self.norm_ext = nn.LayerNorm(d_ffn)
+ else:
+ self.norm_ext = None
+
+ self.key_aware_proj = None
+ self.use_text_feat_guide = use_text_feat_guide
+ assert not use_text_feat_guide
+ self.use_text_cross_attention = use_text_cross_attention
+
+ def rm_self_attn_modules(self):
+ self.self_attn = None
+ self.dropout2 = None
+ self.norm2 = None
+
+ @staticmethod
+ def with_pos_embed(tensor, pos):
+ return tensor if pos is None else tensor + pos
+
+ def forward_ffn(self, tgt, ipdb_flag=False):
+
+ with torch.cuda.amp.autocast(enabled=False):
+ tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
+
+ tgt = tgt + self.dropout4(tgt2)
+ tgt = self.norm3(tgt)
+ return tgt
+
+ def forward(self,
+ # for tgt
+ tgt: Optional[Tensor], # nq, bs, d_model
+ tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
+ tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
+
+ memory_text: Optional[Tensor] = None, # bs, num_token, d_model
+ text_attention_mask: Optional[Tensor] = None, # bs, num_token
+
+ # for memory
+ memory: Optional[Tensor] = None, # hw, bs, d_model
+ memory_key_padding_mask: Optional[Tensor] = None,
+ memory_level_start_index: Optional[Tensor] = None, # num_levels
+ memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
+ memory_pos: Optional[Tensor] = None, # pos for memory
+
+ # sa
+ self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
+ cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
+ ):
+ """
+ Input:
+ - tgt/tgt_query_pos: nq, bs, d_model
+ -
+ """
+ assert cross_attn_mask is None
+
+ # self attention
+ if self.self_attn is not None:
+ # import ipdb; ipdb.set_trace()
+ q = k = self.with_pos_embed(tgt, tgt_query_pos)
+ tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
+ tgt = tgt + self.dropout2(tgt2)
+ tgt = self.norm2(tgt)
+
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # if tgt.isnan().any() | tgt.isinf().any() :
+ # import ipdb; ipdb.set_trace()
+
+ if self.use_text_cross_attention:
+ tgt2 = self.ca_text(self.with_pos_embed(tgt, tgt_query_pos), memory_text.transpose(0, 1),
+ memory_text.transpose(0, 1), key_padding_mask=text_attention_mask)[0]
+ tgt = tgt + self.catext_dropout(tgt2)
+ tgt = self.catext_norm(tgt)
+
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+
+ # if tgt.isnan().any() | tgt.isinf().any() :
+ # import ipdb; ipdb.set_trace()
+
+ tgt2 = self.cross_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
+ tgt_reference_points.transpose(0, 1).contiguous(),
+ memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index,
+ memory_key_padding_mask).transpose(0, 1)
+ tgt = tgt + self.dropout1(tgt2)
+ tgt = self.norm1(tgt)
+
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # tgtk = tgt.clone()
+ # if tgt.isnan().any() | tgt.isinf().any() :
+ # import ipdb; ipdb.set_trace()
+
+ # ffn
+ tgt = self.forward_ffn(tgt)
+ # if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ # if tgt.isnan().any() | tgt.isinf().any() :
+ # tgtk = self.forward_ffn(tgtk, ipdb_flag=True)
+ # import ipdb; ipdb.set_trace()
+
+ return tgt
+
+
+def _get_clones(module, N, layer_share=False):
+ # import ipdb; ipdb.set_trace()
+ if layer_share:
+ return nn.ModuleList([module for i in range(N)])
+ else:
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def build_deformable_transformer(args):
+ decoder_query_perturber = None
+ if args.decoder_layer_noise:
+ from .utils import RandomBoxPerturber
+ decoder_query_perturber = RandomBoxPerturber(
+ x_noise_scale=args.dln_xy_noise, y_noise_scale=args.dln_xy_noise,
+ w_noise_scale=args.dln_hw_noise, h_noise_scale=args.dln_hw_noise)
+
+ use_detached_boxes_dec_out = False
+ try:
+ use_detached_boxes_dec_out = args.use_detached_boxes_dec_out
+ except:
+ use_detached_boxes_dec_out = False
+
+ binary_query_selection = False
+ try:
+ binary_query_selection = args.binary_query_selection
+ except:
+ binary_query_selection = False
+
+ ffn_extra_layernorm = False
+ try:
+ ffn_extra_layernorm = args.ffn_extra_layernorm
+ except:
+ print('ffn_extra_layernorm not found, set to False')
+ ffn_extra_layernorm = False
+
+ return DeformableTransformer(
+ d_model=args.hidden_dim,
+ dropout=args.dropout,
+ nhead=args.nheads,
+ num_queries=args.num_queries,
+ dim_feedforward=args.dim_feedforward,
+ num_encoder_layers=args.enc_layers,
+ num_unicoder_layers=args.unic_layers,
+ num_decoder_layers=args.dec_layers,
+ normalize_before=args.pre_norm,
+ return_intermediate_dec=True,
+ query_dim=args.query_dim,
+ activation=args.transformer_activation,
+ num_patterns=args.num_patterns,
+ modulate_hw_attn=True,
+
+ deformable_encoder=True,
+ deformable_decoder=True,
+ num_feature_levels=args.num_feature_levels,
+ enc_n_points=args.enc_n_points,
+ dec_n_points=args.dec_n_points,
+ use_deformable_box_attn=args.use_deformable_box_attn,
+ box_attn_type=args.box_attn_type,
+
+ learnable_tgt_init=True,
+ decoder_query_perturber=decoder_query_perturber,
+
+ add_channel_attention=args.add_channel_attention,
+ add_pos_value=args.add_pos_value,
+ random_refpoints_xy=args.random_refpoints_xy,
+
+ # two stage
+ two_stage_type=args.two_stage_type, # ['no', 'standard', 'early']
+ two_stage_pat_embed=args.two_stage_pat_embed,
+ two_stage_add_query_num=args.two_stage_add_query_num,
+ two_stage_learn_wh=args.two_stage_learn_wh,
+ two_stage_keep_all_tokens=args.two_stage_keep_all_tokens,
+ dec_layer_number=args.dec_layer_number,
+ rm_self_attn_layers=None,
+ key_aware_type=None,
+ layer_share_type=None,
+
+ rm_detach=None,
+ decoder_sa_type=args.decoder_sa_type,
+ module_seq=args.decoder_module_seq,
+
+ embed_init_tgt=args.embed_init_tgt,
+ use_detached_boxes_dec_out=use_detached_boxes_dec_out,
+ use_text_enhancer=args.use_text_enhancer,
+ use_fusion_layer=args.use_fusion_layer,
+ use_checkpoint=args.use_checkpoint,
+ use_transformer_ckpt=args.use_transformer_ckpt,
+ use_text_cross_attention=args.use_text_cross_attention,
+
+ text_dropout=args.text_dropout,
+ fusion_dropout=args.fusion_dropout,
+ fusion_droppath=args.fusion_droppath,
+
+ binary_query_selection=binary_query_selection,
+ ffn_extra_layernorm=ffn_extra_layernorm,
+ )
diff --git a/src/utils/dependencies/XPose/models/UniPose/fuse_modules.py b/src/utils/dependencies/XPose/models/UniPose/fuse_modules.py
new file mode 100644
index 0000000..3e8edb6
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/fuse_modules.py
@@ -0,0 +1,274 @@
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+
+# from timm.models.layers import DropPath
+from src.modules.util import DropPath
+
+class FeatureResizer(nn.Module):
+ """
+ This class takes as input a set of embeddings of dimension C1 and outputs a set of
+ embedding of dimension C2, after a linear transformation, dropout and normalization (LN).
+ """
+
+ def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True):
+ super().__init__()
+ self.do_ln = do_ln
+ # Object feature encoding
+ self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True)
+ self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12)
+ self.dropout = nn.Dropout(dropout)
+
+ def forward(self, encoder_features):
+ x = self.fc(encoder_features)
+ if self.do_ln:
+ x = self.layer_norm(x)
+ output = self.dropout(x)
+ return output
+
+
+
+
+def l1norm(X, dim, eps=1e-8):
+ """L1-normalize columns of X
+ """
+ norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps
+ X = torch.div(X, norm)
+ return X
+
+
+def l2norm(X, dim, eps=1e-8):
+ """L2-normalize columns of X
+ """
+ norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps
+ X = torch.div(X, norm)
+ return X
+
+
+def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8):
+ """
+ query: (n_context, queryL, d)
+ context: (n_context, sourceL, d)
+ """
+ batch_size_q, queryL = query.size(0), query.size(1)
+ batch_size, sourceL = context.size(0), context.size(1)
+
+ # Get attention
+ # --> (batch, d, queryL)
+ queryT = torch.transpose(query, 1, 2)
+
+ # (batch, sourceL, d)(batch, d, queryL)
+ # --> (batch, sourceL, queryL)
+ attn = torch.bmm(context, queryT)
+ if raw_feature_norm == "softmax":
+ # --> (batch*sourceL, queryL)
+ attn = attn.view(batch_size * sourceL, queryL)
+ attn = nn.Softmax()(attn)
+ # --> (batch, sourceL, queryL)
+ attn = attn.view(batch_size, sourceL, queryL)
+ elif raw_feature_norm == "l2norm":
+ attn = l2norm(attn, 2)
+ elif raw_feature_norm == "clipped_l2norm":
+ attn = nn.LeakyReLU(0.1)(attn)
+ attn = l2norm(attn, 2)
+ else:
+ raise ValueError("unknown first norm type:", raw_feature_norm)
+ # --> (batch, queryL, sourceL)
+ attn = torch.transpose(attn, 1, 2).contiguous()
+ # --> (batch*queryL, sourceL)
+ attn = attn.view(batch_size * queryL, sourceL)
+ attn = nn.Softmax()(attn * smooth)
+ # --> (batch, queryL, sourceL)
+ attn = attn.view(batch_size, queryL, sourceL)
+ # --> (batch, sourceL, queryL)
+ attnT = torch.transpose(attn, 1, 2).contiguous()
+
+ # --> (batch, d, sourceL)
+ contextT = torch.transpose(context, 1, 2)
+ # (batch x d x sourceL)(batch x sourceL x queryL)
+ # --> (batch, d, queryL)
+ weightedContext = torch.bmm(contextT, attnT)
+ # --> (batch, queryL, d)
+ weightedContext = torch.transpose(weightedContext, 1, 2)
+
+ return weightedContext, attnT
+
+
+class BiMultiHeadAttention(nn.Module):
+ def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None):
+ super(BiMultiHeadAttention, self).__init__()
+
+ self.embed_dim = embed_dim
+ self.num_heads = num_heads
+ self.head_dim = embed_dim // num_heads
+ self.v_dim = v_dim
+ self.l_dim = l_dim
+
+ assert (
+ self.head_dim * self.num_heads == self.embed_dim
+ ), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})."
+ self.scale = self.head_dim ** (-0.5)
+ self.dropout = dropout
+
+ self.v_proj = nn.Linear(self.v_dim, self.embed_dim)
+ self.l_proj = nn.Linear(self.l_dim, self.embed_dim)
+ self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim)
+ self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim)
+
+ self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim)
+ self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim)
+
+ self.stable_softmax_2d = True
+ self.clamp_min_for_underflow = True
+ self.clamp_max_for_overflow = True
+
+ self._reset_parameters()
+
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
+
+ def _reset_parameters(self):
+ nn.init.xavier_uniform_(self.v_proj.weight)
+ self.v_proj.bias.data.fill_(0)
+ nn.init.xavier_uniform_(self.l_proj.weight)
+ self.l_proj.bias.data.fill_(0)
+ nn.init.xavier_uniform_(self.values_v_proj.weight)
+ self.values_v_proj.bias.data.fill_(0)
+ nn.init.xavier_uniform_(self.values_l_proj.weight)
+ self.values_l_proj.bias.data.fill_(0)
+ nn.init.xavier_uniform_(self.out_v_proj.weight)
+ self.out_v_proj.bias.data.fill_(0)
+ nn.init.xavier_uniform_(self.out_l_proj.weight)
+ self.out_l_proj.bias.data.fill_(0)
+
+ def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
+ """_summary_
+
+ Args:
+ v (_type_): bs, n_img, dim
+ l (_type_): bs, n_text, dim
+ attention_mask_v (_type_, optional): _description_. bs, n_img
+ attention_mask_l (_type_, optional): _description_. bs, n_text
+
+ Returns:
+ _type_: _description_
+ """
+ # if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+ bsz, tgt_len, _ = v.size()
+
+ query_states = self.v_proj(v) * self.scale
+ key_states = self._shape(self.l_proj(l), -1, bsz)
+ value_v_states = self._shape(self.values_v_proj(v), -1, bsz)
+ value_l_states = self._shape(self.values_l_proj(l), -1, bsz)
+
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
+ key_states = key_states.view(*proj_shape)
+ value_v_states = value_v_states.view(*proj_shape)
+ value_l_states = value_l_states.view(*proj_shape)
+
+ src_len = key_states.size(1)
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) # bs*nhead, nimg, ntxt
+
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
+ raise ValueError(
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
+ )
+
+ if self.stable_softmax_2d:
+ attn_weights = attn_weights - attn_weights.max()
+
+ if self.clamp_min_for_underflow:
+ attn_weights = torch.clamp(attn_weights, min=-50000) # Do not increase -50000, data type half has quite limited range
+ if self.clamp_max_for_overflow:
+ attn_weights = torch.clamp(attn_weights, max=50000) # Do not increase 50000, data type half has quite limited range
+
+ attn_weights_T = attn_weights.transpose(1, 2)
+ attn_weights_l = (attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[
+ 0])
+ if self.clamp_min_for_underflow:
+ attn_weights_l = torch.clamp(attn_weights_l, min=-50000) # Do not increase -50000, data type half has quite limited range
+ if self.clamp_max_for_overflow:
+ attn_weights_l = torch.clamp(attn_weights_l, max=50000) # Do not increase 50000, data type half has quite limited range
+
+ # mask vison for language
+ if attention_mask_v is not None:
+ attention_mask_v = attention_mask_v[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
+ attn_weights_l.masked_fill_(attention_mask_v, float('-inf'))
+
+ attn_weights_l = attn_weights_l.softmax(dim=-1)
+
+ # mask language for vision
+ if attention_mask_l is not None:
+ attention_mask_l = attention_mask_l[:, None, None, :].repeat(1, self.num_heads, 1, 1).flatten(0, 1)
+ attn_weights.masked_fill_(attention_mask_l, float('-inf'))
+ attn_weights_v = attn_weights.softmax(dim=-1)
+
+ attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training)
+ attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training)
+
+ attn_output_v = torch.bmm(attn_probs_v, value_l_states)
+ attn_output_l = torch.bmm(attn_probs_l, value_v_states)
+
+
+ if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}"
+ )
+
+ if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim):
+ raise ValueError(
+ f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}"
+ )
+
+ attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim)
+ attn_output_v = attn_output_v.transpose(1, 2)
+ attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim)
+
+ attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim)
+ attn_output_l = attn_output_l.transpose(1, 2)
+ attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim)
+
+ attn_output_v = self.out_v_proj(attn_output_v)
+ attn_output_l = self.out_l_proj(attn_output_l)
+
+ return attn_output_v, attn_output_l
+
+
+# Bi-Direction MHA (text->image, image->text)
+class BiAttentionBlock(nn.Module):
+ def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1,
+ drop_path=.0, init_values=1e-4, cfg=None):
+ """
+ Inputs:
+ embed_dim - Dimensionality of input and attention feature vectors
+ hidden_dim - Dimensionality of hidden layer in feed-forward network
+ (usually 2-4x larger than embed_dim)
+ num_heads - Number of heads to use in the Multi-Head Attention block
+ dropout - Amount of dropout to apply in the feed-forward network
+ """
+ super(BiAttentionBlock, self).__init__()
+
+ # pre layer norm
+ self.layer_norm_v = nn.LayerNorm(v_dim)
+ self.layer_norm_l = nn.LayerNorm(l_dim)
+ self.attn = BiMultiHeadAttention(v_dim=v_dim,
+ l_dim=l_dim,
+ embed_dim=embed_dim,
+ num_heads=num_heads,
+ dropout=dropout)
+
+ # add layer scale for training stability
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=False)
+ self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=False)
+
+ def forward(self, v, l, attention_mask_v=None, attention_mask_l=None):
+ v = self.layer_norm_v(v)
+ l = self.layer_norm_l(l)
+ delta_v, delta_l = self.attn(v, l, attention_mask_v=attention_mask_v, attention_mask_l=attention_mask_l)
+ # v, l = v + delta_v, l + delta_l
+ v = v + self.drop_path(self.gamma_v * delta_v)
+ l = l + self.drop_path(self.gamma_l * delta_l)
+ return v, l
diff --git a/src/utils/dependencies/XPose/models/UniPose/mask_generate.py b/src/utils/dependencies/XPose/models/UniPose/mask_generate.py
new file mode 100644
index 0000000..ed79e74
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/mask_generate.py
@@ -0,0 +1,56 @@
+import torch
+
+
+def prepare_for_mask(kpt_mask):
+
+
+ tgt_size2 = 50 * 69
+ attn_mask2 = torch.ones(kpt_mask.shape[0], 8, tgt_size2, tgt_size2).to('cuda') < 0
+ group_bbox_kpt = 69
+ num_group=50
+ for matchj in range(num_group * group_bbox_kpt):
+ sj = (matchj // group_bbox_kpt) * group_bbox_kpt
+ ej = (matchj // group_bbox_kpt + 1)*group_bbox_kpt
+ if sj > 0:
+ attn_mask2[:,:,matchj, :sj] = True
+ if ej < num_group * group_bbox_kpt:
+ attn_mask2[:,:,matchj, ej:] = True
+
+
+ bs, length = kpt_mask.shape
+ equal_mask = kpt_mask[:, :, None] == kpt_mask[:, None, :]
+ equal_mask= equal_mask.unsqueeze(1).repeat(1,8,1,1)
+ for idx in range(num_group):
+ start_idx = idx * length
+ end_idx = (idx + 1) * length
+ attn_mask2[:, :,start_idx:end_idx, start_idx:end_idx][equal_mask] = False
+ attn_mask2[:, :,start_idx:end_idx, start_idx:end_idx][~equal_mask] = True
+
+
+
+
+ input_query_label = None
+ input_query_bbox = None
+ attn_mask = None
+ dn_meta = None
+
+ return input_query_label, input_query_bbox, attn_mask, attn_mask2.flatten(0,1), dn_meta
+
+
+def post_process(outputs_class, outputs_coord, dn_meta, aux_loss, _set_aux_loss):
+
+ if dn_meta and dn_meta['pad_size'] > 0:
+
+ output_known_class = [outputs_class_i[:, :dn_meta['pad_size'], :] for outputs_class_i in outputs_class]
+ output_known_coord = [outputs_coord_i[:, :dn_meta['pad_size'], :] for outputs_coord_i in outputs_coord]
+
+ outputs_class = [outputs_class_i[:, dn_meta['pad_size']:, :] for outputs_class_i in outputs_class]
+ outputs_coord = [outputs_coord_i[:, dn_meta['pad_size']:, :] for outputs_coord_i in outputs_coord]
+
+ out = {'pred_logits': output_known_class[-1], 'pred_boxes': output_known_coord[-1]}
+ if aux_loss:
+ out['aux_outputs'] = _set_aux_loss(output_known_class, output_known_coord)
+ dn_meta['output_known_lbs_bboxes'] = out
+ return outputs_class, outputs_coord
+
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/functions/__init__.py b/src/utils/dependencies/XPose/models/UniPose/ops/functions/__init__.py
new file mode 100644
index 0000000..8a2197b
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/functions/__init__.py
@@ -0,0 +1,10 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from .ms_deform_attn_func import MSDeformAttnFunction
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/functions/ms_deform_attn_func.py b/src/utils/dependencies/XPose/models/UniPose/ops/functions/ms_deform_attn_func.py
new file mode 100644
index 0000000..8c5df8c
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/functions/ms_deform_attn_func.py
@@ -0,0 +1,61 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from __future__ import absolute_import
+from __future__ import print_function
+from __future__ import division
+
+import torch
+import torch.nn.functional as F
+from torch.autograd import Function
+from torch.autograd.function import once_differentiable
+
+import MultiScaleDeformableAttention as MSDA
+
+
+class MSDeformAttnFunction(Function):
+ @staticmethod
+ def forward(ctx, value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, im2col_step):
+ ctx.im2col_step = im2col_step
+ output = MSDA.ms_deform_attn_forward(
+ value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, ctx.im2col_step)
+ ctx.save_for_backward(value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights)
+ return output
+
+ @staticmethod
+ @once_differentiable
+ def backward(ctx, grad_output):
+ value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights = ctx.saved_tensors
+ grad_value, grad_sampling_loc, grad_attn_weight = \
+ MSDA.ms_deform_attn_backward(
+ value, value_spatial_shapes, value_level_start_index, sampling_locations, attention_weights, grad_output, ctx.im2col_step)
+
+ return grad_value, None, None, grad_sampling_loc, grad_attn_weight, None
+
+
+def ms_deform_attn_core_pytorch(value, value_spatial_shapes, sampling_locations, attention_weights):
+ # for debug and test only,
+ # need to use cuda version instead
+ N_, S_, M_, D_ = value.shape
+ _, Lq_, M_, L_, P_, _ = sampling_locations.shape
+ value_list = value.split([H_ * W_ for H_, W_ in value_spatial_shapes], dim=1)
+ sampling_grids = 2 * sampling_locations - 1
+ sampling_value_list = []
+ for lid_, (H_, W_) in enumerate(value_spatial_shapes):
+ # N_, H_*W_, M_, D_ -> N_, H_*W_, M_*D_ -> N_, M_*D_, H_*W_ -> N_*M_, D_, H_, W_
+ value_l_ = value_list[lid_].flatten(2).transpose(1, 2).reshape(N_*M_, D_, H_, W_)
+ # N_, Lq_, M_, P_, 2 -> N_, M_, Lq_, P_, 2 -> N_*M_, Lq_, P_, 2
+ sampling_grid_l_ = sampling_grids[:, :, :, lid_].transpose(1, 2).flatten(0, 1)
+ # N_*M_, D_, Lq_, P_
+ sampling_value_l_ = F.grid_sample(value_l_, sampling_grid_l_,
+ mode='bilinear', padding_mode='zeros', align_corners=False)
+ sampling_value_list.append(sampling_value_l_)
+ # (N_, Lq_, M_, L_, P_) -> (N_, M_, Lq_, L_, P_) -> (N_, M_, 1, Lq_, L_*P_)
+ attention_weights = attention_weights.transpose(1, 2).reshape(N_*M_, 1, Lq_, L_*P_)
+ output = (torch.stack(sampling_value_list, dim=-2).flatten(-2) * attention_weights).sum(-1).view(N_, M_*D_, Lq_)
+ return output.transpose(1, 2).contiguous()
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/modules/__init__.py b/src/utils/dependencies/XPose/models/UniPose/ops/modules/__init__.py
new file mode 100644
index 0000000..f82cb1a
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/modules/__init__.py
@@ -0,0 +1,9 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from .ms_deform_attn import MSDeformAttn
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn.py b/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn.py
new file mode 100644
index 0000000..cd48d27
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn.py
@@ -0,0 +1,142 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from __future__ import absolute_import
+from __future__ import print_function
+from __future__ import division
+
+import warnings
+import math, os
+import sys
+sys.path.append(os.path.dirname(os.path.abspath(__file__)))
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+from torch.nn.init import xavier_uniform_, constant_
+
+from src.utils.dependencies.XPose.models.UniPose.ops.functions.ms_deform_attn_func import MSDeformAttnFunction
+
+
+def _is_power_of_2(n):
+ if (not isinstance(n, int)) or (n < 0):
+ raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
+ return (n & (n-1) == 0) and n != 0
+
+
+class MSDeformAttn(nn.Module):
+ def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4, use_4D_normalizer=False):
+ """
+ Multi-Scale Deformable Attention Module
+ :param d_model hidden dimension
+ :param n_levels number of feature levels
+ :param n_heads number of attention heads
+ :param n_points number of sampling points per attention head per feature level
+ """
+ super().__init__()
+ if d_model % n_heads != 0:
+ raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
+ _d_per_head = d_model // n_heads
+ # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
+ if not _is_power_of_2(_d_per_head):
+ warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
+ "which is more efficient in our CUDA implementation.")
+
+ self.im2col_step = 64
+
+ self.d_model = d_model
+ self.n_levels = n_levels
+ self.n_heads = n_heads
+ self.n_points = n_points
+
+ self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
+ self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
+ self.value_proj = nn.Linear(d_model, d_model)
+ self.output_proj = nn.Linear(d_model, d_model)
+
+ self.use_4D_normalizer = use_4D_normalizer
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ constant_(self.sampling_offsets.weight.data, 0.)
+ thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
+ grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
+ for i in range(self.n_points):
+ grid_init[:, :, i, :] *= i + 1
+ with torch.no_grad():
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
+ constant_(self.attention_weights.weight.data, 0.)
+ constant_(self.attention_weights.bias.data, 0.)
+ xavier_uniform_(self.value_proj.weight.data)
+ constant_(self.value_proj.bias.data, 0.)
+ xavier_uniform_(self.output_proj.weight.data)
+ constant_(self.output_proj.bias.data, 0.)
+
+ def forward(self, query, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
+ """
+ :param query (N, Length_{query}, C)
+ :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
+ or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
+ :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
+ :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
+ :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
+ :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
+
+ :return output (N, Length_{query}, C)
+ """
+ N, Len_q, _ = query.shape
+ N, Len_in, _ = input_flatten.shape
+ assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in
+
+ value = self.value_proj(input_flatten)
+ if input_padding_mask is not None:
+ value = value.masked_fill(input_padding_mask[..., None], float(0))
+ value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
+ sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
+ attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
+ attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)
+ # N, Len_q, n_heads, n_levels, n_points, 2
+
+ # if os.environ.get('IPDB_DEBUG_SHILONG', False) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+
+ if reference_points.shape[-1] == 2:
+ offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
+ sampling_locations = reference_points[:, :, None, :, None, :] \
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
+ elif reference_points.shape[-1] == 4:
+ if self.use_4D_normalizer:
+ offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
+ sampling_locations = reference_points[:, :, None, :, None, :2] \
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] * reference_points[:, :, None, :, None, 2:] * 0.5
+ else:
+ sampling_locations = reference_points[:, :, None, :, None, :2] \
+ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
+ else:
+ raise ValueError(
+ 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
+
+
+ # if os.environ.get('IPDB_DEBUG_SHILONG', False) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+
+ # for amp
+ if value.dtype == torch.float16:
+ # for mixed precision
+ output = MSDeformAttnFunction.apply(
+ value.to(torch.float32), input_spatial_shapes, input_level_start_index, sampling_locations.to(torch.float32), attention_weights, self.im2col_step)
+ output = output.to(torch.float16)
+ output = self.output_proj(output)
+ return output
+
+ output = MSDeformAttnFunction.apply(
+ value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
+ output = self.output_proj(output)
+ return output
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn_key_aware.py b/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn_key_aware.py
new file mode 100644
index 0000000..b737ba6
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/modules/ms_deform_attn_key_aware.py
@@ -0,0 +1,130 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from __future__ import absolute_import
+from __future__ import print_function
+from __future__ import division
+
+import warnings
+import math, os
+
+import torch
+from torch import nn
+import torch.nn.functional as F
+from torch.nn.init import xavier_uniform_, constant_
+
+try:
+ from src.utils.dependencies.XPose.models.UniPose.ops.functions import MSDeformAttnFunction
+except:
+ warnings.warn('Failed to import MSDeformAttnFunction.')
+
+
+def _is_power_of_2(n):
+ if (not isinstance(n, int)) or (n < 0):
+ raise ValueError("invalid input for _is_power_of_2: {} (type: {})".format(n, type(n)))
+ return (n & (n-1) == 0) and n != 0
+
+
+class MSDeformAttn(nn.Module):
+ def __init__(self, d_model=256, n_levels=4, n_heads=8, n_points=4, use_4D_normalizer=False):
+ """
+ Multi-Scale Deformable Attention Module
+ :param d_model hidden dimension
+ :param n_levels number of feature levels
+ :param n_heads number of attention heads
+ :param n_points number of sampling points per attention head per feature level
+ """
+ super().__init__()
+ if d_model % n_heads != 0:
+ raise ValueError('d_model must be divisible by n_heads, but got {} and {}'.format(d_model, n_heads))
+ _d_per_head = d_model // n_heads
+ # you'd better set _d_per_head to a power of 2 which is more efficient in our CUDA implementation
+ if not _is_power_of_2(_d_per_head):
+ warnings.warn("You'd better set d_model in MSDeformAttn to make the dimension of each attention head a power of 2 "
+ "which is more efficient in our CUDA implementation.")
+
+ self.im2col_step = 64
+
+ self.d_model = d_model
+ self.n_levels = n_levels
+ self.n_heads = n_heads
+ self.n_points = n_points
+
+ self.sampling_offsets = nn.Linear(d_model, n_heads * n_levels * n_points * 2)
+ self.attention_weights = nn.Linear(d_model, n_heads * n_levels * n_points)
+ self.value_proj = nn.Linear(d_model, d_model)
+ self.output_proj = nn.Linear(d_model, d_model)
+
+ self.use_4D_normalizer = use_4D_normalizer
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ constant_(self.sampling_offsets.weight.data, 0.)
+ thetas = torch.arange(self.n_heads, dtype=torch.float32) * (2.0 * math.pi / self.n_heads)
+ grid_init = torch.stack([thetas.cos(), thetas.sin()], -1)
+ grid_init = (grid_init / grid_init.abs().max(-1, keepdim=True)[0]).view(self.n_heads, 1, 1, 2).repeat(1, self.n_levels, self.n_points, 1)
+ for i in range(self.n_points):
+ grid_init[:, :, i, :] *= i + 1
+ with torch.no_grad():
+ self.sampling_offsets.bias = nn.Parameter(grid_init.view(-1))
+ constant_(self.attention_weights.weight.data, 0.)
+ constant_(self.attention_weights.bias.data, 0.)
+ xavier_uniform_(self.value_proj.weight.data)
+ constant_(self.value_proj.bias.data, 0.)
+ xavier_uniform_(self.output_proj.weight.data)
+ constant_(self.output_proj.bias.data, 0.)
+
+ def forward(self, query, key, reference_points, input_flatten, input_spatial_shapes, input_level_start_index, input_padding_mask=None):
+ """
+ :param query (N, Length_{query}, C)
+ :param key (N, 1, C)
+ :param reference_points (N, Length_{query}, n_levels, 2), range in [0, 1], top-left (0,0), bottom-right (1, 1), including padding area
+ or (N, Length_{query}, n_levels, 4), add additional (w, h) to form reference boxes
+ :param input_flatten (N, \sum_{l=0}^{L-1} H_l \cdot W_l, C)
+ :param input_spatial_shapes (n_levels, 2), [(H_0, W_0), (H_1, W_1), ..., (H_{L-1}, W_{L-1})]
+ :param input_level_start_index (n_levels, ), [0, H_0*W_0, H_0*W_0+H_1*W_1, H_0*W_0+H_1*W_1+H_2*W_2, ..., H_0*W_0+H_1*W_1+...+H_{L-1}*W_{L-1}]
+ :param input_padding_mask (N, \sum_{l=0}^{L-1} H_l \cdot W_l), True for padding elements, False for non-padding elements
+
+ :return output (N, Length_{query}, C)
+ """
+ N, Len_q, _ = query.shape
+ N, Len_in, _ = input_flatten.shape
+ assert (input_spatial_shapes[:, 0] * input_spatial_shapes[:, 1]).sum() == Len_in
+
+ value = self.value_proj(input_flatten)
+ if input_padding_mask is not None:
+ value = value.masked_fill(input_padding_mask[..., None], float(0))
+ value = value.view(N, Len_in, self.n_heads, self.d_model // self.n_heads)
+ sampling_offsets = self.sampling_offsets(query).view(N, Len_q, self.n_heads, self.n_levels, self.n_points, 2)
+ attention_weights = self.attention_weights(query).view(N, Len_q, self.n_heads, self.n_levels * self.n_points)
+ attention_weights = F.softmax(attention_weights, -1).view(N, Len_q, self.n_heads, self.n_levels, self.n_points)
+ # N, Len_q, n_heads, n_levels, n_points, 2
+
+ # if os.environ.get('IPDB_DEBUG_SHILONG', False) == 'INFO':
+ # import ipdb; ipdb.set_trace()
+
+ if reference_points.shape[-1] == 2:
+ offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
+ sampling_locations = reference_points[:, :, None, :, None, :] \
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :]
+ elif reference_points.shape[-1] == 4:
+ if self.use_4D_normalizer:
+ offset_normalizer = torch.stack([input_spatial_shapes[..., 1], input_spatial_shapes[..., 0]], -1)
+ sampling_locations = reference_points[:, :, None, :, None, :2] \
+ + sampling_offsets / offset_normalizer[None, None, None, :, None, :] * reference_points[:, :, None, :, None, 2:] * 0.5
+ else:
+ sampling_locations = reference_points[:, :, None, :, None, :2] \
+ + sampling_offsets / self.n_points * reference_points[:, :, None, :, None, 2:] * 0.5
+ else:
+ raise ValueError(
+ 'Last dim of reference_points must be 2 or 4, but get {} instead.'.format(reference_points.shape[-1]))
+ output = MSDeformAttnFunction.apply(
+ value, input_spatial_shapes, input_level_start_index, sampling_locations, attention_weights, self.im2col_step)
+ output = self.output_proj(output)
+ return output
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/setup.py b/src/utils/dependencies/XPose/models/UniPose/ops/setup.py
new file mode 100644
index 0000000..049f923
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/setup.py
@@ -0,0 +1,73 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+import os
+import glob
+
+import torch
+
+from torch.utils.cpp_extension import CUDA_HOME
+from torch.utils.cpp_extension import CppExtension
+from torch.utils.cpp_extension import CUDAExtension
+
+from setuptools import find_packages
+from setuptools import setup
+
+requirements = ["torch", "torchvision"]
+
+def get_extensions():
+ this_dir = os.path.dirname(os.path.abspath(__file__))
+ extensions_dir = os.path.join(this_dir, "src")
+
+ main_file = glob.glob(os.path.join(extensions_dir, "*.cpp"))
+ source_cpu = glob.glob(os.path.join(extensions_dir, "cpu", "*.cpp"))
+ source_cuda = glob.glob(os.path.join(extensions_dir, "cuda", "*.cu"))
+
+ sources = main_file + source_cpu
+ extension = CppExtension
+ extra_compile_args = {"cxx": []}
+ define_macros = []
+
+ # import ipdb; ipdb.set_trace()
+
+ if torch.cuda.is_available() and CUDA_HOME is not None:
+ extension = CUDAExtension
+ sources += source_cuda
+ define_macros += [("WITH_CUDA", None)]
+ extra_compile_args["nvcc"] = [
+ "-DCUDA_HAS_FP16=1",
+ "-D__CUDA_NO_HALF_OPERATORS__",
+ "-D__CUDA_NO_HALF_CONVERSIONS__",
+ "-D__CUDA_NO_HALF2_OPERATORS__",
+ ]
+ else:
+ raise NotImplementedError('Cuda is not availabel')
+
+ sources = [os.path.join(extensions_dir, s) for s in sources]
+ include_dirs = [extensions_dir]
+ ext_modules = [
+ extension(
+ "MultiScaleDeformableAttention",
+ sources,
+ include_dirs=include_dirs,
+ define_macros=define_macros,
+ extra_compile_args=extra_compile_args,
+ )
+ ]
+ return ext_modules
+
+setup(
+ name="MultiScaleDeformableAttention",
+ version="1.0",
+ author="Weijie Su",
+ url="https://github.com/fundamentalvision/Deformable-DETR",
+ description="PyTorch Wrapper for CUDA Functions of Multi-Scale Deformable Attention",
+ packages=find_packages(exclude=("configs", "tests",)),
+ ext_modules=get_extensions(),
+ cmdclass={"build_ext": torch.utils.cpp_extension.BuildExtension},
+)
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.cpp b/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.cpp
new file mode 100644
index 0000000..e1bf854
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.cpp
@@ -0,0 +1,41 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#include
+
+#include
+#include
+
+
+at::Tensor
+ms_deform_attn_cpu_forward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const int im2col_step)
+{
+ AT_ERROR("Not implement on cpu");
+}
+
+std::vector
+ms_deform_attn_cpu_backward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const at::Tensor &grad_output,
+ const int im2col_step)
+{
+ AT_ERROR("Not implement on cpu");
+}
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.h b/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.h
new file mode 100644
index 0000000..81b7b58
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/cpu/ms_deform_attn_cpu.h
@@ -0,0 +1,33 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#pragma once
+#include
+
+at::Tensor
+ms_deform_attn_cpu_forward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const int im2col_step);
+
+std::vector
+ms_deform_attn_cpu_backward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const at::Tensor &grad_output,
+ const int im2col_step);
+
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.cu b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.cu
new file mode 100644
index 0000000..d6d5836
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.cu
@@ -0,0 +1,153 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#include
+#include "cuda/ms_deform_im2col_cuda.cuh"
+
+#include
+#include
+#include
+#include
+
+
+at::Tensor ms_deform_attn_cuda_forward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const int im2col_step)
+{
+ AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
+ AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
+ AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
+ AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
+ AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
+
+ AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
+ AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
+ AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
+ AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
+ AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
+
+ const int batch = value.size(0);
+ const int spatial_size = value.size(1);
+ const int num_heads = value.size(2);
+ const int channels = value.size(3);
+
+ const int num_levels = spatial_shapes.size(0);
+
+ const int num_query = sampling_loc.size(1);
+ const int num_point = sampling_loc.size(4);
+
+ const int im2col_step_ = std::min(batch, im2col_step);
+
+ AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
+
+ auto output = at::zeros({batch, num_query, num_heads, channels}, value.options());
+
+ const int batch_n = im2col_step_;
+ auto output_n = output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
+ auto per_value_size = spatial_size * num_heads * channels;
+ auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
+ auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
+ for (int n = 0; n < batch/im2col_step_; ++n)
+ {
+ auto columns = output_n.select(0, n);
+ AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_forward_cuda", ([&] {
+ ms_deformable_im2col_cuda(at::cuda::getCurrentCUDAStream(),
+ value.data() + n * im2col_step_ * per_value_size,
+ spatial_shapes.data(),
+ level_start_index.data(),
+ sampling_loc.data() + n * im2col_step_ * per_sample_loc_size,
+ attn_weight.data() + n * im2col_step_ * per_attn_weight_size,
+ batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
+ columns.data());
+
+ }));
+ }
+
+ output = output.view({batch, num_query, num_heads*channels});
+
+ return output;
+}
+
+
+std::vector ms_deform_attn_cuda_backward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const at::Tensor &grad_output,
+ const int im2col_step)
+{
+
+ AT_ASSERTM(value.is_contiguous(), "value tensor has to be contiguous");
+ AT_ASSERTM(spatial_shapes.is_contiguous(), "spatial_shapes tensor has to be contiguous");
+ AT_ASSERTM(level_start_index.is_contiguous(), "level_start_index tensor has to be contiguous");
+ AT_ASSERTM(sampling_loc.is_contiguous(), "sampling_loc tensor has to be contiguous");
+ AT_ASSERTM(attn_weight.is_contiguous(), "attn_weight tensor has to be contiguous");
+ AT_ASSERTM(grad_output.is_contiguous(), "grad_output tensor has to be contiguous");
+
+ AT_ASSERTM(value.type().is_cuda(), "value must be a CUDA tensor");
+ AT_ASSERTM(spatial_shapes.type().is_cuda(), "spatial_shapes must be a CUDA tensor");
+ AT_ASSERTM(level_start_index.type().is_cuda(), "level_start_index must be a CUDA tensor");
+ AT_ASSERTM(sampling_loc.type().is_cuda(), "sampling_loc must be a CUDA tensor");
+ AT_ASSERTM(attn_weight.type().is_cuda(), "attn_weight must be a CUDA tensor");
+ AT_ASSERTM(grad_output.type().is_cuda(), "grad_output must be a CUDA tensor");
+
+ const int batch = value.size(0);
+ const int spatial_size = value.size(1);
+ const int num_heads = value.size(2);
+ const int channels = value.size(3);
+
+ const int num_levels = spatial_shapes.size(0);
+
+ const int num_query = sampling_loc.size(1);
+ const int num_point = sampling_loc.size(4);
+
+ const int im2col_step_ = std::min(batch, im2col_step);
+
+ AT_ASSERTM(batch % im2col_step_ == 0, "batch(%d) must divide im2col_step(%d)", batch, im2col_step_);
+
+ auto grad_value = at::zeros_like(value);
+ auto grad_sampling_loc = at::zeros_like(sampling_loc);
+ auto grad_attn_weight = at::zeros_like(attn_weight);
+
+ const int batch_n = im2col_step_;
+ auto per_value_size = spatial_size * num_heads * channels;
+ auto per_sample_loc_size = num_query * num_heads * num_levels * num_point * 2;
+ auto per_attn_weight_size = num_query * num_heads * num_levels * num_point;
+ auto grad_output_n = grad_output.view({batch/im2col_step_, batch_n, num_query, num_heads, channels});
+
+ for (int n = 0; n < batch/im2col_step_; ++n)
+ {
+ auto grad_output_g = grad_output_n.select(0, n);
+ AT_DISPATCH_FLOATING_TYPES(value.type(), "ms_deform_attn_backward_cuda", ([&] {
+ ms_deformable_col2im_cuda(at::cuda::getCurrentCUDAStream(),
+ grad_output_g.data(),
+ value.data() + n * im2col_step_ * per_value_size,
+ spatial_shapes.data(),
+ level_start_index.data(),
+ sampling_loc.data() + n * im2col_step_ * per_sample_loc_size,
+ attn_weight.data() + n * im2col_step_ * per_attn_weight_size,
+ batch_n, spatial_size, num_heads, channels, num_levels, num_query, num_point,
+ grad_value.data() + n * im2col_step_ * per_value_size,
+ grad_sampling_loc.data() + n * im2col_step_ * per_sample_loc_size,
+ grad_attn_weight.data() + n * im2col_step_ * per_attn_weight_size);
+
+ }));
+ }
+
+ return {
+ grad_value, grad_sampling_loc, grad_attn_weight
+ };
+}
\ No newline at end of file
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.h b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.h
new file mode 100644
index 0000000..c7ae53f
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_attn_cuda.h
@@ -0,0 +1,30 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#pragma once
+#include
+
+at::Tensor ms_deform_attn_cuda_forward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const int im2col_step);
+
+std::vector ms_deform_attn_cuda_backward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const at::Tensor &grad_output,
+ const int im2col_step);
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_im2col_cuda.cuh b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_im2col_cuda.cuh
new file mode 100644
index 0000000..6bc2acb
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/cuda/ms_deform_im2col_cuda.cuh
@@ -0,0 +1,1327 @@
+/*!
+**************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************
+* Modified from DCN (https://github.com/msracver/Deformable-ConvNets)
+* Copyright (c) 2018 Microsoft
+**************************************************************************
+*/
+
+#include
+#include
+#include
+
+#include
+#include
+
+#include
+
+#define CUDA_KERNEL_LOOP(i, n) \
+ for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
+ i < (n); \
+ i += blockDim.x * gridDim.x)
+
+const int CUDA_NUM_THREADS = 1024;
+inline int GET_BLOCKS(const int N, const int num_threads)
+{
+ return (N + num_threads - 1) / num_threads;
+}
+
+
+template
+__device__ scalar_t ms_deform_attn_im2col_bilinear(const scalar_t* &bottom_data,
+ const int &height, const int &width, const int &nheads, const int &channels,
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c)
+{
+ const int h_low = floor(h);
+ const int w_low = floor(w);
+ const int h_high = h_low + 1;
+ const int w_high = w_low + 1;
+
+ const scalar_t lh = h - h_low;
+ const scalar_t lw = w - w_low;
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
+
+ const int w_stride = nheads * channels;
+ const int h_stride = width * w_stride;
+ const int h_low_ptr_offset = h_low * h_stride;
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
+ const int w_low_ptr_offset = w_low * w_stride;
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
+ const int base_ptr = m * channels + c;
+
+ scalar_t v1 = 0;
+ if (h_low >= 0 && w_low >= 0)
+ {
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
+ v1 = bottom_data[ptr1];
+ }
+ scalar_t v2 = 0;
+ if (h_low >= 0 && w_high <= width - 1)
+ {
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
+ v2 = bottom_data[ptr2];
+ }
+ scalar_t v3 = 0;
+ if (h_high <= height - 1 && w_low >= 0)
+ {
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
+ v3 = bottom_data[ptr3];
+ }
+ scalar_t v4 = 0;
+ if (h_high <= height - 1 && w_high <= width - 1)
+ {
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
+ v4 = bottom_data[ptr4];
+ }
+
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
+
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+ return val;
+}
+
+
+template
+__device__ void ms_deform_attn_col2im_bilinear(const scalar_t* &bottom_data,
+ const int &height, const int &width, const int &nheads, const int &channels,
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c,
+ const scalar_t &top_grad,
+ const scalar_t &attn_weight,
+ scalar_t* &grad_value,
+ scalar_t* grad_sampling_loc,
+ scalar_t* grad_attn_weight)
+{
+ const int h_low = floor(h);
+ const int w_low = floor(w);
+ const int h_high = h_low + 1;
+ const int w_high = w_low + 1;
+
+ const scalar_t lh = h - h_low;
+ const scalar_t lw = w - w_low;
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
+
+ const int w_stride = nheads * channels;
+ const int h_stride = width * w_stride;
+ const int h_low_ptr_offset = h_low * h_stride;
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
+ const int w_low_ptr_offset = w_low * w_stride;
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
+ const int base_ptr = m * channels + c;
+
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
+ const scalar_t top_grad_value = top_grad * attn_weight;
+ scalar_t grad_h_weight = 0, grad_w_weight = 0;
+
+ scalar_t v1 = 0;
+ if (h_low >= 0 && w_low >= 0)
+ {
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
+ v1 = bottom_data[ptr1];
+ grad_h_weight -= hw * v1;
+ grad_w_weight -= hh * v1;
+ atomicAdd(grad_value+ptr1, w1*top_grad_value);
+ }
+ scalar_t v2 = 0;
+ if (h_low >= 0 && w_high <= width - 1)
+ {
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
+ v2 = bottom_data[ptr2];
+ grad_h_weight -= lw * v2;
+ grad_w_weight += hh * v2;
+ atomicAdd(grad_value+ptr2, w2*top_grad_value);
+ }
+ scalar_t v3 = 0;
+ if (h_high <= height - 1 && w_low >= 0)
+ {
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
+ v3 = bottom_data[ptr3];
+ grad_h_weight += hw * v3;
+ grad_w_weight -= lh * v3;
+ atomicAdd(grad_value+ptr3, w3*top_grad_value);
+ }
+ scalar_t v4 = 0;
+ if (h_high <= height - 1 && w_high <= width - 1)
+ {
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
+ v4 = bottom_data[ptr4];
+ grad_h_weight += lw * v4;
+ grad_w_weight += lh * v4;
+ atomicAdd(grad_value+ptr4, w4*top_grad_value);
+ }
+
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+ *grad_attn_weight = top_grad * val;
+ *grad_sampling_loc = width * grad_w_weight * top_grad_value;
+ *(grad_sampling_loc + 1) = height * grad_h_weight * top_grad_value;
+}
+
+
+template
+__device__ void ms_deform_attn_col2im_bilinear_gm(const scalar_t* &bottom_data,
+ const int &height, const int &width, const int &nheads, const int &channels,
+ const scalar_t &h, const scalar_t &w, const int &m, const int &c,
+ const scalar_t &top_grad,
+ const scalar_t &attn_weight,
+ scalar_t* &grad_value,
+ scalar_t* grad_sampling_loc,
+ scalar_t* grad_attn_weight)
+{
+ const int h_low = floor(h);
+ const int w_low = floor(w);
+ const int h_high = h_low + 1;
+ const int w_high = w_low + 1;
+
+ const scalar_t lh = h - h_low;
+ const scalar_t lw = w - w_low;
+ const scalar_t hh = 1 - lh, hw = 1 - lw;
+
+ const int w_stride = nheads * channels;
+ const int h_stride = width * w_stride;
+ const int h_low_ptr_offset = h_low * h_stride;
+ const int h_high_ptr_offset = h_low_ptr_offset + h_stride;
+ const int w_low_ptr_offset = w_low * w_stride;
+ const int w_high_ptr_offset = w_low_ptr_offset + w_stride;
+ const int base_ptr = m * channels + c;
+
+ const scalar_t w1 = hh * hw, w2 = hh * lw, w3 = lh * hw, w4 = lh * lw;
+ const scalar_t top_grad_value = top_grad * attn_weight;
+ scalar_t grad_h_weight = 0, grad_w_weight = 0;
+
+ scalar_t v1 = 0;
+ if (h_low >= 0 && w_low >= 0)
+ {
+ const int ptr1 = h_low_ptr_offset + w_low_ptr_offset + base_ptr;
+ v1 = bottom_data[ptr1];
+ grad_h_weight -= hw * v1;
+ grad_w_weight -= hh * v1;
+ atomicAdd(grad_value+ptr1, w1*top_grad_value);
+ }
+ scalar_t v2 = 0;
+ if (h_low >= 0 && w_high <= width - 1)
+ {
+ const int ptr2 = h_low_ptr_offset + w_high_ptr_offset + base_ptr;
+ v2 = bottom_data[ptr2];
+ grad_h_weight -= lw * v2;
+ grad_w_weight += hh * v2;
+ atomicAdd(grad_value+ptr2, w2*top_grad_value);
+ }
+ scalar_t v3 = 0;
+ if (h_high <= height - 1 && w_low >= 0)
+ {
+ const int ptr3 = h_high_ptr_offset + w_low_ptr_offset + base_ptr;
+ v3 = bottom_data[ptr3];
+ grad_h_weight += hw * v3;
+ grad_w_weight -= lh * v3;
+ atomicAdd(grad_value+ptr3, w3*top_grad_value);
+ }
+ scalar_t v4 = 0;
+ if (h_high <= height - 1 && w_high <= width - 1)
+ {
+ const int ptr4 = h_high_ptr_offset + w_high_ptr_offset + base_ptr;
+ v4 = bottom_data[ptr4];
+ grad_h_weight += lw * v4;
+ grad_w_weight += lh * v4;
+ atomicAdd(grad_value+ptr4, w4*top_grad_value);
+ }
+
+ const scalar_t val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4);
+ atomicAdd(grad_attn_weight, top_grad * val);
+ atomicAdd(grad_sampling_loc, width * grad_w_weight * top_grad_value);
+ atomicAdd(grad_sampling_loc + 1, height * grad_h_weight * top_grad_value);
+}
+
+
+template
+__global__ void ms_deformable_im2col_gpu_kernel(const int n,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *data_col)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ scalar_t *data_col_ptr = data_col + index;
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+ scalar_t col = 0;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const scalar_t *data_value_ptr = data_value + (data_value_ptr_init_offset + level_start_id * qid_stride);
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ col += ms_deform_attn_im2col_bilinear(data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col) * weight;
+ }
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ }
+ }
+ *data_col_ptr = col;
+ }
+}
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
+ __shared__ scalar_t cache_grad_attn_weight[blockSize];
+ unsigned int tid = threadIdx.x;
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
+ *(cache_grad_attn_weight+threadIdx.x)=0;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
+ }
+
+ __syncthreads();
+ if (tid == 0)
+ {
+ scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
+ int sid=2;
+ for (unsigned int tid = 1; tid < blockSize; ++tid)
+ {
+ _grad_w += cache_grad_sampling_loc[sid];
+ _grad_h += cache_grad_sampling_loc[sid + 1];
+ _grad_a += cache_grad_attn_weight[tid];
+ sid += 2;
+ }
+
+
+ *grad_sampling_loc = _grad_w;
+ *(grad_sampling_loc + 1) = _grad_h;
+ *grad_attn_weight = _grad_a;
+ }
+ __syncthreads();
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ __shared__ scalar_t cache_grad_sampling_loc[blockSize * 2];
+ __shared__ scalar_t cache_grad_attn_weight[blockSize];
+ unsigned int tid = threadIdx.x;
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
+ *(cache_grad_attn_weight+threadIdx.x)=0;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
+ }
+
+ __syncthreads();
+
+ for (unsigned int s=blockSize/2; s>0; s>>=1)
+ {
+ if (tid < s) {
+ const unsigned int xid1 = tid << 1;
+ const unsigned int xid2 = (tid + s) << 1;
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
+ }
+ __syncthreads();
+ }
+
+ if (tid == 0)
+ {
+ *grad_sampling_loc = cache_grad_sampling_loc[0];
+ *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
+ *grad_attn_weight = cache_grad_attn_weight[0];
+ }
+ __syncthreads();
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v1(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ extern __shared__ int _s[];
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
+ unsigned int tid = threadIdx.x;
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
+ *(cache_grad_attn_weight+threadIdx.x)=0;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
+ }
+
+ __syncthreads();
+ if (tid == 0)
+ {
+ scalar_t _grad_w=cache_grad_sampling_loc[0], _grad_h=cache_grad_sampling_loc[1], _grad_a=cache_grad_attn_weight[0];
+ int sid=2;
+ for (unsigned int tid = 1; tid < blockDim.x; ++tid)
+ {
+ _grad_w += cache_grad_sampling_loc[sid];
+ _grad_h += cache_grad_sampling_loc[sid + 1];
+ _grad_a += cache_grad_attn_weight[tid];
+ sid += 2;
+ }
+
+
+ *grad_sampling_loc = _grad_w;
+ *(grad_sampling_loc + 1) = _grad_h;
+ *grad_attn_weight = _grad_a;
+ }
+ __syncthreads();
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ extern __shared__ int _s[];
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
+ unsigned int tid = threadIdx.x;
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
+ *(cache_grad_attn_weight+threadIdx.x)=0;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
+ }
+
+ __syncthreads();
+
+ for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
+ {
+ if (tid < s) {
+ const unsigned int xid1 = tid << 1;
+ const unsigned int xid2 = (tid + s) << 1;
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
+ if (tid + (s << 1) < spre)
+ {
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
+ }
+ }
+ __syncthreads();
+ }
+
+ if (tid == 0)
+ {
+ *grad_sampling_loc = cache_grad_sampling_loc[0];
+ *(grad_sampling_loc + 1) = cache_grad_sampling_loc[1];
+ *grad_attn_weight = cache_grad_attn_weight[0];
+ }
+ __syncthreads();
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ extern __shared__ int _s[];
+ scalar_t* cache_grad_sampling_loc = (scalar_t*)_s;
+ scalar_t* cache_grad_attn_weight = cache_grad_sampling_loc + 2 * blockDim.x;
+ unsigned int tid = threadIdx.x;
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ *(cache_grad_sampling_loc+(threadIdx.x << 1)) = 0;
+ *(cache_grad_sampling_loc+((threadIdx.x << 1) + 1)) = 0;
+ *(cache_grad_attn_weight+threadIdx.x)=0;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ cache_grad_sampling_loc+(threadIdx.x << 1), cache_grad_attn_weight+threadIdx.x);
+ }
+
+ __syncthreads();
+
+ for (unsigned int s=blockDim.x/2, spre=blockDim.x; s>0; s>>=1, spre>>=1)
+ {
+ if (tid < s) {
+ const unsigned int xid1 = tid << 1;
+ const unsigned int xid2 = (tid + s) << 1;
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + s];
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2];
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1];
+ if (tid + (s << 1) < spre)
+ {
+ cache_grad_attn_weight[tid] += cache_grad_attn_weight[tid + (s << 1)];
+ cache_grad_sampling_loc[xid1] += cache_grad_sampling_loc[xid2 + (s << 1)];
+ cache_grad_sampling_loc[xid1 + 1] += cache_grad_sampling_loc[xid2 + 1 + (s << 1)];
+ }
+ }
+ __syncthreads();
+ }
+
+ if (tid == 0)
+ {
+ atomicAdd(grad_sampling_loc, cache_grad_sampling_loc[0]);
+ atomicAdd(grad_sampling_loc + 1, cache_grad_sampling_loc[1]);
+ atomicAdd(grad_attn_weight, cache_grad_attn_weight[0]);
+ }
+ __syncthreads();
+
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+
+template
+__global__ void ms_deformable_col2im_gpu_kernel_gm(const int n,
+ const scalar_t *grad_col,
+ const scalar_t *data_value,
+ const int64_t *data_spatial_shapes,
+ const int64_t *data_level_start_index,
+ const scalar_t *data_sampling_loc,
+ const scalar_t *data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t *grad_value,
+ scalar_t *grad_sampling_loc,
+ scalar_t *grad_attn_weight)
+{
+ CUDA_KERNEL_LOOP(index, n)
+ {
+ int _temp = index;
+ const int c_col = _temp % channels;
+ _temp /= channels;
+ const int sampling_index = _temp;
+ const int m_col = _temp % num_heads;
+ _temp /= num_heads;
+ const int q_col = _temp % num_query;
+ _temp /= num_query;
+ const int b_col = _temp;
+
+ const scalar_t top_grad = grad_col[index];
+
+ int data_weight_ptr = sampling_index * num_levels * num_point;
+ int data_loc_w_ptr = data_weight_ptr << 1;
+ const int grad_sampling_ptr = data_weight_ptr;
+ grad_sampling_loc += grad_sampling_ptr << 1;
+ grad_attn_weight += grad_sampling_ptr;
+ const int grad_weight_stride = 1;
+ const int grad_loc_stride = 2;
+ const int qid_stride = num_heads * channels;
+ const int data_value_ptr_init_offset = b_col * spatial_size * qid_stride;
+
+ for (int l_col=0; l_col < num_levels; ++l_col)
+ {
+ const int level_start_id = data_level_start_index[l_col];
+ const int spatial_h_ptr = l_col << 1;
+ const int spatial_h = data_spatial_shapes[spatial_h_ptr];
+ const int spatial_w = data_spatial_shapes[spatial_h_ptr + 1];
+ const int value_ptr_offset = data_value_ptr_init_offset + level_start_id * qid_stride;
+ const scalar_t *data_value_ptr = data_value + value_ptr_offset;
+ scalar_t *grad_value_ptr = grad_value + value_ptr_offset;
+
+ for (int p_col=0; p_col < num_point; ++p_col)
+ {
+ const scalar_t loc_w = data_sampling_loc[data_loc_w_ptr];
+ const scalar_t loc_h = data_sampling_loc[data_loc_w_ptr + 1];
+ const scalar_t weight = data_attn_weight[data_weight_ptr];
+
+ const scalar_t h_im = loc_h * spatial_h - 0.5;
+ const scalar_t w_im = loc_w * spatial_w - 0.5;
+ if (h_im > -1 && w_im > -1 && h_im < spatial_h && w_im < spatial_w)
+ {
+ ms_deform_attn_col2im_bilinear_gm(
+ data_value_ptr, spatial_h, spatial_w, num_heads, channels, h_im, w_im, m_col, c_col,
+ top_grad, weight, grad_value_ptr,
+ grad_sampling_loc, grad_attn_weight);
+ }
+ data_weight_ptr += 1;
+ data_loc_w_ptr += 2;
+ grad_attn_weight += grad_weight_stride;
+ grad_sampling_loc += grad_loc_stride;
+ }
+ }
+ }
+}
+
+
+template
+void ms_deformable_im2col_cuda(cudaStream_t stream,
+ const scalar_t* data_value,
+ const int64_t* data_spatial_shapes,
+ const int64_t* data_level_start_index,
+ const scalar_t* data_sampling_loc,
+ const scalar_t* data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t* data_col)
+{
+ const int num_kernels = batch_size * num_query * num_heads * channels;
+ const int num_actual_kernels = batch_size * num_query * num_heads * channels;
+ const int num_threads = CUDA_NUM_THREADS;
+ ms_deformable_im2col_gpu_kernel
+ <<>>(
+ num_kernels, data_value, data_spatial_shapes, data_level_start_index, data_sampling_loc, data_attn_weight,
+ batch_size, spatial_size, num_heads, channels, num_levels, num_query, num_point, data_col);
+
+ cudaError_t err = cudaGetLastError();
+ if (err != cudaSuccess)
+ {
+ printf("error in ms_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
+ }
+
+}
+
+template
+void ms_deformable_col2im_cuda(cudaStream_t stream,
+ const scalar_t* grad_col,
+ const scalar_t* data_value,
+ const int64_t * data_spatial_shapes,
+ const int64_t * data_level_start_index,
+ const scalar_t * data_sampling_loc,
+ const scalar_t * data_attn_weight,
+ const int batch_size,
+ const int spatial_size,
+ const int num_heads,
+ const int channels,
+ const int num_levels,
+ const int num_query,
+ const int num_point,
+ scalar_t* grad_value,
+ scalar_t* grad_sampling_loc,
+ scalar_t* grad_attn_weight)
+{
+ const int num_threads = (channels > CUDA_NUM_THREADS)?CUDA_NUM_THREADS:channels;
+ const int num_kernels = batch_size * num_query * num_heads * channels;
+ const int num_actual_kernels = batch_size * num_query * num_heads * channels;
+ if (channels > 1024)
+ {
+ if ((channels & 1023) == 0)
+ {
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v2_multi_blocks
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ }
+ else
+ {
+ ms_deformable_col2im_gpu_kernel_gm
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ }
+ }
+ else{
+ switch(channels)
+ {
+ case 1:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 2:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 4:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 8:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 16:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 32:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 64:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 128:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 256:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 512:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ case 1024:
+ ms_deformable_col2im_gpu_kernel_shm_blocksize_aware_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ break;
+ default:
+ if (channels < 64)
+ {
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v1
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ }
+ else
+ {
+ ms_deformable_col2im_gpu_kernel_shm_reduce_v2
+ <<>>(
+ num_kernels,
+ grad_col,
+ data_value,
+ data_spatial_shapes,
+ data_level_start_index,
+ data_sampling_loc,
+ data_attn_weight,
+ batch_size,
+ spatial_size,
+ num_heads,
+ channels,
+ num_levels,
+ num_query,
+ num_point,
+ grad_value,
+ grad_sampling_loc,
+ grad_attn_weight);
+ }
+ }
+ }
+ cudaError_t err = cudaGetLastError();
+ if (err != cudaSuccess)
+ {
+ printf("error in ms_deformable_col2im_cuda: %s\n", cudaGetErrorString(err));
+ }
+
+}
\ No newline at end of file
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/ms_deform_attn.h b/src/utils/dependencies/XPose/models/UniPose/ops/src/ms_deform_attn.h
new file mode 100644
index 0000000..ac0ef2e
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/ms_deform_attn.h
@@ -0,0 +1,62 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#pragma once
+
+#include "cpu/ms_deform_attn_cpu.h"
+
+#ifdef WITH_CUDA
+#include "cuda/ms_deform_attn_cuda.h"
+#endif
+
+
+at::Tensor
+ms_deform_attn_forward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const int im2col_step)
+{
+ if (value.type().is_cuda())
+ {
+#ifdef WITH_CUDA
+ return ms_deform_attn_cuda_forward(
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, im2col_step);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ AT_ERROR("Not implemented on the CPU");
+}
+
+std::vector
+ms_deform_attn_backward(
+ const at::Tensor &value,
+ const at::Tensor &spatial_shapes,
+ const at::Tensor &level_start_index,
+ const at::Tensor &sampling_loc,
+ const at::Tensor &attn_weight,
+ const at::Tensor &grad_output,
+ const int im2col_step)
+{
+ if (value.type().is_cuda())
+ {
+#ifdef WITH_CUDA
+ return ms_deform_attn_cuda_backward(
+ value, spatial_shapes, level_start_index, sampling_loc, attn_weight, grad_output, im2col_step);
+#else
+ AT_ERROR("Not compiled with GPU support");
+#endif
+ }
+ AT_ERROR("Not implemented on the CPU");
+}
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/src/vision.cpp b/src/utils/dependencies/XPose/models/UniPose/ops/src/vision.cpp
new file mode 100644
index 0000000..2201f63
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/src/vision.cpp
@@ -0,0 +1,16 @@
+/*!
+**************************************************************************************************
+* Deformable DETR
+* Copyright (c) 2020 SenseTime. All Rights Reserved.
+* Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+**************************************************************************************************
+* Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+**************************************************************************************************
+*/
+
+#include "ms_deform_attn.h"
+
+PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
+ m.def("ms_deform_attn_forward", &ms_deform_attn_forward, "ms_deform_attn_forward");
+ m.def("ms_deform_attn_backward", &ms_deform_attn_backward, "ms_deform_attn_backward");
+}
diff --git a/src/utils/dependencies/XPose/models/UniPose/ops/test.py b/src/utils/dependencies/XPose/models/UniPose/ops/test.py
new file mode 100644
index 0000000..8dbf6d5
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/ops/test.py
@@ -0,0 +1,89 @@
+# ------------------------------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------------------------------
+# Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0
+# ------------------------------------------------------------------------------------------------
+
+from __future__ import absolute_import
+from __future__ import print_function
+from __future__ import division
+
+import time
+import torch
+import torch.nn as nn
+from torch.autograd import gradcheck
+
+from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch
+
+
+N, M, D = 1, 2, 2
+Lq, L, P = 2, 2, 2
+shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda()
+level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1]))
+S = sum([(H*W).item() for H, W in shapes])
+
+
+torch.manual_seed(3)
+
+
+@torch.no_grad()
+def check_forward_equal_with_pytorch_double():
+ value = torch.rand(N, S, M, D).cuda() * 0.01
+ sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
+ attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
+ attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
+ im2col_step = 2
+ output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu()
+ output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu()
+ fwdok = torch.allclose(output_cuda, output_pytorch)
+ max_abs_err = (output_cuda - output_pytorch).abs().max()
+ max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
+
+ print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
+
+
+@torch.no_grad()
+def check_forward_equal_with_pytorch_float():
+ value = torch.rand(N, S, M, D).cuda() * 0.01
+ sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
+ attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
+ attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
+ im2col_step = 2
+ output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu()
+ output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu()
+ fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3)
+ max_abs_err = (output_cuda - output_pytorch).abs().max()
+ max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max()
+
+ print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}')
+
+
+def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True):
+
+ value = torch.rand(N, S, M, channels).cuda() * 0.01
+ sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda()
+ attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5
+ attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True)
+ im2col_step = 2
+ func = MSDeformAttnFunction.apply
+
+ value.requires_grad = grad_value
+ sampling_locations.requires_grad = grad_sampling_loc
+ attention_weights.requires_grad = grad_attn_weight
+
+ gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step))
+
+ print(f'* {gradok} check_gradient_numerical(D={channels})')
+
+
+if __name__ == '__main__':
+ check_forward_equal_with_pytorch_double()
+ check_forward_equal_with_pytorch_float()
+
+ for channels in [30, 32, 64, 71, 1025, 2048, 3096]:
+ check_gradient_numerical(channels, True, True, True)
+
+
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/position_encoding.py b/src/utils/dependencies/XPose/models/UniPose/position_encoding.py
new file mode 100644
index 0000000..e0db9cc
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/position_encoding.py
@@ -0,0 +1,157 @@
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Conditional DETR
+# Copyright (c) 2021 Microsoft. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Copied from DETR (https://github.com/facebookresearch/detr)
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
+# ------------------------------------------------------------------------
+
+"""
+Various positional encodings for the transformer.
+"""
+import math
+import torch
+from torch import nn
+
+from util.misc import NestedTensor
+
+
+class PositionEmbeddingSine(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one
+ used by the Attention is all you need paper, generalized to work on images.
+ """
+ def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None):
+ super().__init__()
+ self.num_pos_feats = num_pos_feats
+ self.temperature = temperature
+ self.normalize = normalize
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ if scale is None:
+ scale = 2 * math.pi
+ self.scale = scale
+
+ def forward(self, tensor_list: NestedTensor):
+ x = tensor_list.tensors
+ mask = tensor_list.mask
+ assert mask is not None
+ not_mask = ~mask
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
+ if self.normalize:
+ eps = 1e-6
+ # if os.environ.get("SHILONG_AMP", None) == '1':
+ # eps = 1e-4
+ # else:
+ # eps = 1e-6
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+ dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+ dim_t = self.temperature ** (2 * (dim_t // 2) / self.num_pos_feats)
+
+ pos_x = x_embed[:, :, :, None] / dim_t
+ pos_y = y_embed[:, :, :, None] / dim_t
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+ return pos
+
+class PositionEmbeddingSineHW(nn.Module):
+ """
+ This is a more standard version of the position embedding, very similar to the one
+ used by the Attention is all you need paper, generalized to work on images.
+ """
+ def __init__(self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None):
+ super().__init__()
+ self.num_pos_feats = num_pos_feats
+ self.temperatureH = temperatureH
+ self.temperatureW = temperatureW
+ self.normalize = normalize
+ if scale is not None and normalize is False:
+ raise ValueError("normalize should be True if scale is passed")
+ if scale is None:
+ scale = 2 * math.pi
+ self.scale = scale
+
+ def forward(self, tensor_list: NestedTensor):
+ x = tensor_list.tensors
+ mask = tensor_list.mask
+ assert mask is not None
+ not_mask = ~mask
+ y_embed = not_mask.cumsum(1, dtype=torch.float32)
+ x_embed = not_mask.cumsum(2, dtype=torch.float32)
+
+ # import ipdb; ipdb.set_trace()
+
+ if self.normalize:
+ eps = 1e-6
+ y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale
+ x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale
+
+ dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+ dim_tx = self.temperatureW ** (2 * (dim_tx // 2) / self.num_pos_feats)
+ pos_x = x_embed[:, :, :, None] / dim_tx
+
+ dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device)
+ dim_ty = self.temperatureH ** (2 * (dim_ty // 2) / self.num_pos_feats)
+ pos_y = y_embed[:, :, :, None] / dim_ty
+
+ pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3)
+ pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2)
+
+ # import ipdb; ipdb.set_trace()
+
+ return pos
+
+class PositionEmbeddingLearned(nn.Module):
+ """
+ Absolute pos embedding, learned.
+ """
+ def __init__(self, num_pos_feats=256):
+ super().__init__()
+ self.row_embed = nn.Embedding(50, num_pos_feats)
+ self.col_embed = nn.Embedding(50, num_pos_feats)
+ self.reset_parameters()
+
+ def reset_parameters(self):
+ nn.init.uniform_(self.row_embed.weight)
+ nn.init.uniform_(self.col_embed.weight)
+
+ def forward(self, tensor_list: NestedTensor):
+ x = tensor_list.tensors
+ h, w = x.shape[-2:]
+ i = torch.arange(w, device=x.device)
+ j = torch.arange(h, device=x.device)
+ x_emb = self.col_embed(i)
+ y_emb = self.row_embed(j)
+ pos = torch.cat([
+ x_emb.unsqueeze(0).repeat(h, 1, 1),
+ y_emb.unsqueeze(1).repeat(1, w, 1),
+ ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1)
+ return pos
+
+
+def build_position_encoding(args):
+ N_steps = args.hidden_dim // 2
+ if args.position_embedding in ('v2', 'sine'):
+ # TODO find a better way of exposing other arguments
+ position_embedding = PositionEmbeddingSineHW(
+ N_steps,
+ temperatureH=args.pe_temperatureH,
+ temperatureW=args.pe_temperatureW,
+ normalize=True
+ )
+ elif args.position_embedding in ('v3', 'learned'):
+ position_embedding = PositionEmbeddingLearned(N_steps)
+ else:
+ raise ValueError(f"not supported {args.position_embedding}")
+
+ return position_embedding
diff --git a/src/utils/dependencies/XPose/models/UniPose/swin_transformer.py b/src/utils/dependencies/XPose/models/UniPose/swin_transformer.py
new file mode 100644
index 0000000..8f42508
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/swin_transformer.py
@@ -0,0 +1,701 @@
+
+import torch
+import torch.nn as nn
+import torch.nn.functional as F
+import torch.utils.checkpoint as checkpoint
+import numpy as np
+
+from util.misc import NestedTensor
+# from timm.models.layers import DropPath, to_2tuple, trunc_normal_
+from src.modules.util import DropPath, to_2tuple, trunc_normal_
+
+
+
+class Mlp(nn.Module):
+ """ Multilayer perceptron."""
+
+ def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
+ super().__init__()
+ out_features = out_features or in_features
+ hidden_features = hidden_features or in_features
+ self.fc1 = nn.Linear(in_features, hidden_features)
+ self.act = act_layer()
+ self.fc2 = nn.Linear(hidden_features, out_features)
+ self.drop = nn.Dropout(drop)
+
+ def forward(self, x):
+ x = self.fc1(x)
+ x = self.act(x)
+ x = self.drop(x)
+ x = self.fc2(x)
+ x = self.drop(x)
+ return x
+
+
+def window_partition(x, window_size):
+ """
+ Args:
+ x: (B, H, W, C)
+ window_size (int): window size
+ Returns:
+ windows: (num_windows*B, window_size, window_size, C)
+ """
+ B, H, W, C = x.shape
+ x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
+ windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
+ return windows
+
+
+def window_reverse(windows, window_size, H, W):
+ """
+ Args:
+ windows: (num_windows*B, window_size, window_size, C)
+ window_size (int): Window size
+ H (int): Height of image
+ W (int): Width of image
+ Returns:
+ x: (B, H, W, C)
+ """
+ B = int(windows.shape[0] / (H * W / window_size / window_size))
+ x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
+ x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
+ return x
+
+
+class WindowAttention(nn.Module):
+ """ Window based multi-head self attention (W-MSA) module with relative position bias.
+ It supports both of shifted and non-shifted window.
+ Args:
+ dim (int): Number of input channels.
+ window_size (tuple[int]): The height and width of the window.
+ num_heads (int): Number of attention heads.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
+ attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
+ proj_drop (float, optional): Dropout ratio of output. Default: 0.0
+ """
+
+ def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
+
+ super().__init__()
+ self.dim = dim
+ self.window_size = window_size # Wh, Ww
+ self.num_heads = num_heads
+ head_dim = dim // num_heads
+ self.scale = qk_scale or head_dim ** -0.5
+
+ # define a parameter table of relative position bias
+ self.relative_position_bias_table = nn.Parameter(
+ torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
+
+ # get pair-wise relative position index for each token inside the window
+ coords_h = torch.arange(self.window_size[0])
+ coords_w = torch.arange(self.window_size[1])
+ coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
+ coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
+ relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
+ relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
+ relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
+ relative_coords[:, :, 1] += self.window_size[1] - 1
+ relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
+ relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
+ self.register_buffer("relative_position_index", relative_position_index)
+
+ self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
+ self.attn_drop = nn.Dropout(attn_drop)
+ self.proj = nn.Linear(dim, dim)
+ self.proj_drop = nn.Dropout(proj_drop)
+
+ trunc_normal_(self.relative_position_bias_table, std=.02)
+ self.softmax = nn.Softmax(dim=-1)
+
+ def forward(self, x, mask=None):
+ """ Forward function.
+ Args:
+ x: input features with shape of (num_windows*B, N, C)
+ mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
+ """
+ B_, N, C = x.shape
+ qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
+ q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
+
+ q = q * self.scale
+ attn = (q @ k.transpose(-2, -1))
+
+ relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
+ self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
+ relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
+ attn = attn + relative_position_bias.unsqueeze(0)
+
+ if mask is not None:
+ nW = mask.shape[0]
+ attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
+ attn = attn.view(-1, self.num_heads, N, N)
+ attn = self.softmax(attn)
+ else:
+ attn = self.softmax(attn)
+
+ attn = self.attn_drop(attn)
+
+ x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
+ x = self.proj(x)
+ x = self.proj_drop(x)
+ return x
+
+
+class SwinTransformerBlock(nn.Module):
+ """ Swin Transformer Block.
+ Args:
+ dim (int): Number of input channels.
+ num_heads (int): Number of attention heads.
+ window_size (int): Window size.
+ shift_size (int): Shift size for SW-MSA.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+ drop (float, optional): Dropout rate. Default: 0.0
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
+ drop_path (float, optional): Stochastic depth rate. Default: 0.0
+ act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ """
+
+ def __init__(self, dim, num_heads, window_size=7, shift_size=0,
+ mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
+ act_layer=nn.GELU, norm_layer=nn.LayerNorm):
+ super().__init__()
+ self.dim = dim
+ self.num_heads = num_heads
+ self.window_size = window_size
+ self.shift_size = shift_size
+ self.mlp_ratio = mlp_ratio
+ assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
+
+ self.norm1 = norm_layer(dim)
+ self.attn = WindowAttention(
+ dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
+ qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
+
+ self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
+ self.norm2 = norm_layer(dim)
+ mlp_hidden_dim = int(dim * mlp_ratio)
+ self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
+
+ self.H = None
+ self.W = None
+
+ def forward(self, x, mask_matrix):
+ """ Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ mask_matrix: Attention mask for cyclic shift.
+ """
+ B, L, C = x.shape
+ H, W = self.H, self.W
+ assert L == H * W, "input feature has wrong size"
+
+ shortcut = x
+ x = self.norm1(x)
+ x = x.view(B, H, W, C)
+
+ # pad feature maps to multiples of window size
+ pad_l = pad_t = 0
+ pad_r = (self.window_size - W % self.window_size) % self.window_size
+ pad_b = (self.window_size - H % self.window_size) % self.window_size
+ x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
+ _, Hp, Wp, _ = x.shape
+
+ # cyclic shift
+ if self.shift_size > 0:
+ shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
+ attn_mask = mask_matrix
+ else:
+ shifted_x = x
+ attn_mask = None
+
+ # partition windows
+ x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
+ x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
+
+ # W-MSA/SW-MSA
+ attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
+
+ # merge windows
+ attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
+ shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
+
+ # reverse cyclic shift
+ if self.shift_size > 0:
+ x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
+ else:
+ x = shifted_x
+
+ if pad_r > 0 or pad_b > 0:
+ x = x[:, :H, :W, :].contiguous()
+
+ x = x.view(B, H * W, C)
+
+ # FFN
+ x = shortcut + self.drop_path(x)
+ x = x + self.drop_path(self.mlp(self.norm2(x)))
+
+ return x
+
+
+class PatchMerging(nn.Module):
+ """ Patch Merging Layer
+ Args:
+ dim (int): Number of input channels.
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ """
+ def __init__(self, dim, norm_layer=nn.LayerNorm):
+ super().__init__()
+ self.dim = dim
+ self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
+ self.norm = norm_layer(4 * dim)
+
+ def forward(self, x, H, W):
+ """ Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+ B, L, C = x.shape
+ assert L == H * W, "input feature has wrong size"
+
+ x = x.view(B, H, W, C)
+
+ # padding
+ pad_input = (H % 2 == 1) or (W % 2 == 1)
+ if pad_input:
+ x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
+
+ x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
+ x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
+ x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
+ x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
+ x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
+ x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
+
+ x = self.norm(x)
+ x = self.reduction(x)
+
+ return x
+
+
+class BasicLayer(nn.Module):
+ """ A basic Swin Transformer layer for one stage.
+ Args:
+ dim (int): Number of feature channels
+ depth (int): Depths of this stage.
+ num_heads (int): Number of attention head.
+ window_size (int): Local window size. Default: 7.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
+ drop (float, optional): Dropout rate. Default: 0.0
+ attn_drop (float, optional): Attention dropout rate. Default: 0.0
+ drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
+ norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
+ downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ """
+
+ def __init__(self,
+ dim,
+ depth,
+ num_heads,
+ window_size=7,
+ mlp_ratio=4.,
+ qkv_bias=True,
+ qk_scale=None,
+ drop=0.,
+ attn_drop=0.,
+ drop_path=0.,
+ norm_layer=nn.LayerNorm,
+ downsample=None,
+ use_checkpoint=False):
+ super().__init__()
+ self.window_size = window_size
+ self.shift_size = window_size // 2
+ self.depth = depth
+ self.use_checkpoint = use_checkpoint
+
+ # build blocks
+ self.blocks = nn.ModuleList([
+ SwinTransformerBlock(
+ dim=dim,
+ num_heads=num_heads,
+ window_size=window_size,
+ shift_size=0 if (i % 2 == 0) else window_size // 2,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop,
+ attn_drop=attn_drop,
+ drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
+ norm_layer=norm_layer)
+ for i in range(depth)])
+
+ # patch merging layer
+ if downsample is not None:
+ self.downsample = downsample(dim=dim, norm_layer=norm_layer)
+ else:
+ self.downsample = None
+
+ def forward(self, x, H, W):
+ """ Forward function.
+ Args:
+ x: Input feature, tensor size (B, H*W, C).
+ H, W: Spatial resolution of the input feature.
+ """
+
+ # calculate attention mask for SW-MSA
+ Hp = int(np.ceil(H / self.window_size)) * self.window_size
+ Wp = int(np.ceil(W / self.window_size)) * self.window_size
+ img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
+ h_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ w_slices = (slice(0, -self.window_size),
+ slice(-self.window_size, -self.shift_size),
+ slice(-self.shift_size, None))
+ cnt = 0
+ for h in h_slices:
+ for w in w_slices:
+ img_mask[:, h, w, :] = cnt
+ cnt += 1
+
+ mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
+ mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
+ attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
+ attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
+
+ for blk in self.blocks:
+ blk.H, blk.W = H, W
+ if self.use_checkpoint:
+ x = checkpoint.checkpoint(blk, x, attn_mask)
+ else:
+ x = blk(x, attn_mask)
+ if self.downsample is not None:
+ x_down = self.downsample(x, H, W)
+ Wh, Ww = (H + 1) // 2, (W + 1) // 2
+ return x, H, W, x_down, Wh, Ww
+ else:
+ return x, H, W, x, H, W
+
+
+class PatchEmbed(nn.Module):
+ """ Image to Patch Embedding
+ Args:
+ patch_size (int): Patch token size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ norm_layer (nn.Module, optional): Normalization layer. Default: None
+ """
+
+ def __init__(self, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None):
+ super().__init__()
+ patch_size = to_2tuple(patch_size)
+ self.patch_size = patch_size
+
+ self.in_chans = in_chans
+ self.embed_dim = embed_dim
+
+ self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
+ if norm_layer is not None:
+ self.norm = norm_layer(embed_dim)
+ else:
+ self.norm = None
+
+ def forward(self, x):
+ """Forward function."""
+ # padding
+ _, _, H, W = x.size()
+ if W % self.patch_size[1] != 0:
+ x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
+ if H % self.patch_size[0] != 0:
+ x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
+
+ x = self.proj(x) # B C Wh Ww
+ if self.norm is not None:
+ Wh, Ww = x.size(2), x.size(3)
+ x = x.flatten(2).transpose(1, 2)
+ x = self.norm(x)
+ x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
+
+ return x
+
+
+class SwinTransformer(nn.Module):
+ """ Swin Transformer backbone.
+ A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
+ https://arxiv.org/pdf/2103.14030
+ Args:
+ pretrain_img_size (int): Input image size for training the pretrained model,
+ used in absolute postion embedding. Default 224.
+ patch_size (int | tuple(int)): Patch size. Default: 4.
+ in_chans (int): Number of input image channels. Default: 3.
+ embed_dim (int): Number of linear projection output channels. Default: 96.
+ depths (tuple[int]): Depths of each Swin Transformer stage.
+ num_heads (tuple[int]): Number of attention head of each stage.
+ window_size (int): Window size. Default: 7.
+ mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
+ qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
+ qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
+ drop_rate (float): Dropout rate.
+ attn_drop_rate (float): Attention dropout rate. Default: 0.
+ drop_path_rate (float): Stochastic depth rate. Default: 0.2.
+ norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
+ ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
+ patch_norm (bool): If True, add normalization after patch embedding. Default: True.
+ out_indices (Sequence[int]): Output from which stages.
+ frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
+ -1 means not freezing any parameters.
+ use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
+ dilation (bool): if True, the output size if 16x downsample, ow 32x downsample.
+ """
+
+ def __init__(self,
+ pretrain_img_size=224,
+ patch_size=4,
+ in_chans=3,
+ embed_dim=96,
+ depths=[2, 2, 6, 2],
+ num_heads=[3, 6, 12, 24],
+ window_size=7,
+ mlp_ratio=4.,
+ qkv_bias=True,
+ qk_scale=None,
+ drop_rate=0.,
+ attn_drop_rate=0.,
+ drop_path_rate=0.2,
+ norm_layer=nn.LayerNorm,
+ ape=False,
+ patch_norm=True,
+ out_indices=(0, 1, 2, 3),
+ frozen_stages=-1,
+ dilation=False,
+ use_checkpoint=False):
+ super().__init__()
+
+ self.pretrain_img_size = pretrain_img_size
+ self.num_layers = len(depths)
+ self.embed_dim = embed_dim
+ self.ape = ape
+ self.patch_norm = patch_norm
+ self.out_indices = out_indices
+ self.frozen_stages = frozen_stages
+ self.dilation = dilation
+
+ # if use_checkpoint:
+ # print("use_checkpoint!!!!!!!!!!!!!!!!!!!!!!!!")
+
+ # split image into non-overlapping patches
+ self.patch_embed = PatchEmbed(
+ patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
+ norm_layer=norm_layer if self.patch_norm else None)
+
+ # absolute position embedding
+ if self.ape:
+ pretrain_img_size = to_2tuple(pretrain_img_size)
+ patch_size = to_2tuple(patch_size)
+ patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
+
+ self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
+ trunc_normal_(self.absolute_pos_embed, std=.02)
+
+ self.pos_drop = nn.Dropout(p=drop_rate)
+
+ # stochastic depth
+ dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
+
+ # build layers
+ self.layers = nn.ModuleList()
+ # prepare downsample list
+ downsamplelist = [PatchMerging for i in range(self.num_layers)]
+ downsamplelist[-1] = None
+ num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+ if self.dilation:
+ downsamplelist[-2] = None
+ num_features[-1] = int(embed_dim * 2 ** (self.num_layers - 1)) // 2
+ for i_layer in range(self.num_layers):
+ layer = BasicLayer(
+ # dim=int(embed_dim * 2 ** i_layer),
+ dim=num_features[i_layer],
+ depth=depths[i_layer],
+ num_heads=num_heads[i_layer],
+ window_size=window_size,
+ mlp_ratio=mlp_ratio,
+ qkv_bias=qkv_bias,
+ qk_scale=qk_scale,
+ drop=drop_rate,
+ attn_drop=attn_drop_rate,
+ drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
+ norm_layer=norm_layer,
+ # downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
+ downsample=downsamplelist[i_layer],
+ use_checkpoint=use_checkpoint)
+ self.layers.append(layer)
+
+ # num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
+ self.num_features = num_features
+
+ # add a norm layer for each output
+ for i_layer in out_indices:
+ layer = norm_layer(num_features[i_layer])
+ layer_name = f'norm{i_layer}'
+ self.add_module(layer_name, layer)
+
+ self._freeze_stages()
+
+ def _freeze_stages(self):
+ if self.frozen_stages >= 0:
+ self.patch_embed.eval()
+ for param in self.patch_embed.parameters():
+ param.requires_grad = False
+
+ if self.frozen_stages >= 1 and self.ape:
+ self.absolute_pos_embed.requires_grad = False
+
+ if self.frozen_stages >= 2:
+ self.pos_drop.eval()
+ for i in range(0, self.frozen_stages - 1):
+ m = self.layers[i]
+ m.eval()
+ for param in m.parameters():
+ param.requires_grad = False
+
+
+
+ def forward_raw(self, x):
+ """Forward function."""
+ x = self.patch_embed(x)
+
+ Wh, Ww = x.size(2), x.size(3)
+ if self.ape:
+ # interpolate the position embedding to the corresponding size
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
+ x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
+ else:
+ x = x.flatten(2).transpose(1, 2)
+ x = self.pos_drop(x)
+
+ outs = []
+ for i in range(self.num_layers):
+ layer = self.layers[i]
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+ # import ipdb; ipdb.set_trace()
+
+ if i in self.out_indices:
+ norm_layer = getattr(self, f'norm{i}')
+ x_out = norm_layer(x_out)
+
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+ outs.append(out)
+ # in:
+ # torch.Size([2, 3, 1024, 1024])
+ # outs:
+ # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
+ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
+ return tuple(outs)
+
+
+ def forward(self, tensor_list: NestedTensor):
+ x = tensor_list.tensors
+
+ """Forward function."""
+ x = self.patch_embed(x)
+
+ Wh, Ww = x.size(2), x.size(3)
+ if self.ape:
+ # interpolate the position embedding to the corresponding size
+ absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
+ x = (x + absolute_pos_embed).flatten(2).transpose(1, 2) # B Wh*Ww C
+ else:
+ x = x.flatten(2).transpose(1, 2)
+ x = self.pos_drop(x)
+
+ outs = []
+ for i in range(self.num_layers):
+ layer = self.layers[i]
+ x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
+
+ if i in self.out_indices:
+ norm_layer = getattr(self, f'norm{i}')
+ x_out = norm_layer(x_out)
+
+ out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
+ outs.append(out)
+ # in:
+ # torch.Size([2, 3, 1024, 1024])
+ # out:
+ # [torch.Size([2, 192, 256, 256]), torch.Size([2, 384, 128, 128]), \
+ # torch.Size([2, 768, 64, 64]), torch.Size([2, 1536, 32, 32])]
+
+ # collect for nesttensors
+ outs_dict = {}
+ for idx, out_i in enumerate(outs):
+ m = tensor_list.mask
+ assert m is not None
+ mask = F.interpolate(m[None].float(), size=out_i.shape[-2:]).to(torch.bool)[0]
+ outs_dict[idx] = NestedTensor(out_i, mask)
+
+ return outs_dict
+
+
+ def train(self, mode=True):
+ """Convert the model into training mode while keep layers freezed."""
+ super(SwinTransformer, self).train(mode)
+ self._freeze_stages()
+
+
+
+def build_swin_transformer(modelname, pretrain_img_size, **kw):
+ assert modelname in ['swin_T_224_1k', 'swin_B_224_22k', 'swin_B_384_22k', 'swin_L_224_22k', 'swin_L_384_22k']
+
+ model_para_dict = {
+ 'swin_T_224_1k': dict(
+ embed_dim=96,
+ depths=[ 2, 2, 6, 2 ],
+ num_heads=[ 3, 6, 12, 24],
+ window_size=7
+ ),
+ 'swin_B_224_22k': dict(
+ embed_dim=128,
+ depths=[ 2, 2, 18, 2 ],
+ num_heads=[ 4, 8, 16, 32 ],
+ window_size=7
+ ),
+ 'swin_B_384_22k': dict(
+ embed_dim=128,
+ depths=[ 2, 2, 18, 2 ],
+ num_heads=[ 4, 8, 16, 32 ],
+ window_size=12
+ ),
+ 'swin_L_224_22k': dict(
+ embed_dim=192,
+ depths=[ 2, 2, 18, 2 ],
+ num_heads=[ 6, 12, 24, 48 ],
+ window_size=7
+ ),
+ 'swin_L_384_22k': dict(
+ embed_dim=192,
+ depths=[ 2, 2, 18, 2 ],
+ num_heads=[ 6, 12, 24, 48 ],
+ window_size=12
+ ),
+ }
+ kw_cgf = model_para_dict[modelname]
+ kw_cgf.update(kw)
+ model = SwinTransformer(pretrain_img_size=pretrain_img_size, **kw_cgf)
+ return model
+
+if __name__ == "__main__":
+ model = build_swin_transformer('swin_L_384_22k', 384, dilation=True)
+ x = torch.rand(2, 3, 1024, 1024)
+ y = model.forward_raw(x)
+ import ipdb; ipdb.set_trace()
+ x = torch.rand(2, 3, 384, 384)
+ y = model.forward_raw(x)
diff --git a/src/utils/dependencies/XPose/models/UniPose/transformer_deformable.py b/src/utils/dependencies/XPose/models/UniPose/transformer_deformable.py
new file mode 100644
index 0000000..1d441e8
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/transformer_deformable.py
@@ -0,0 +1,595 @@
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Deformable DETR
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Modified from DETR (https://github.com/facebookresearch/detr)
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+# ------------------------------------------------------------------------
+
+import copy
+import math
+import torch
+from torch import nn, Tensor
+from torch.nn.init import xavier_uniform_, constant_, normal_
+from typing import Optional
+
+from util.misc import inverse_sigmoid
+from .ops.modules import MSDeformAttn
+from .utils import MLP, _get_activation_fn, gen_sineembed_for_position
+
+class DeformableTransformer(nn.Module):
+ def __init__(self, d_model=256, nhead=8,
+ num_encoder_layers=6, num_decoder_layers=6, dim_feedforward=1024, dropout=0.1,
+ activation="relu", return_intermediate_dec=False,
+ num_feature_levels=4, dec_n_points=4, enc_n_points=4,
+ two_stage=False, two_stage_num_proposals=300,
+ use_dab=False, high_dim_query_update=False, no_sine_embed=False):
+ super().__init__()
+
+ self.d_model = d_model
+ self.nhead = nhead
+ self.two_stage = two_stage
+ self.two_stage_num_proposals = two_stage_num_proposals
+ self.use_dab = use_dab
+
+ encoder_layer = DeformableTransformerEncoderLayer(d_model, dim_feedforward,
+ dropout, activation,
+ num_feature_levels, nhead, enc_n_points)
+ self.encoder = DeformableTransformerEncoder(encoder_layer, num_encoder_layers)
+
+ decoder_layer = DeformableTransformerDecoderLayer(d_model, dim_feedforward,
+ dropout, activation,
+ num_feature_levels, nhead, dec_n_points)
+ self.decoder = DeformableTransformerDecoder(decoder_layer, num_decoder_layers, return_intermediate_dec,
+ use_dab=use_dab, d_model=d_model, high_dim_query_update=high_dim_query_update, no_sine_embed=no_sine_embed)
+
+ self.level_embed = nn.Parameter(torch.Tensor(num_feature_levels, d_model))
+
+ if two_stage:
+ self.enc_output = nn.Linear(d_model, d_model)
+ self.enc_output_norm = nn.LayerNorm(d_model)
+ self.pos_trans = nn.Linear(d_model * 2, d_model * 2)
+ self.pos_trans_norm = nn.LayerNorm(d_model * 2)
+ else:
+ if not self.use_dab:
+ self.reference_points = nn.Linear(d_model, 2)
+
+ self.high_dim_query_update = high_dim_query_update
+ if high_dim_query_update:
+ assert not self.use_dab, "use_dab must be True"
+
+ self._reset_parameters()
+
+ def _reset_parameters(self):
+ for p in self.parameters():
+ if p.dim() > 1:
+ nn.init.xavier_uniform_(p)
+ for m in self.modules():
+ if isinstance(m, MSDeformAttn):
+ m._reset_parameters()
+ if not self.two_stage and not self.use_dab:
+ xavier_uniform_(self.reference_points.weight.data, gain=1.0)
+ constant_(self.reference_points.bias.data, 0.)
+ normal_(self.level_embed)
+
+ def get_proposal_pos_embed(self, proposals):
+ num_pos_feats = 128
+ temperature = 10000
+ scale = 2 * math.pi
+
+ dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=proposals.device)
+ dim_t = temperature ** (2 * (dim_t // 2) / num_pos_feats)
+ # N, L, 4
+ proposals = proposals.sigmoid() * scale
+ # N, L, 4, 128
+ pos = proposals[:, :, :, None] / dim_t
+ # N, L, 4, 64, 2
+ pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), dim=4).flatten(2)
+ return pos
+
+ def gen_encoder_output_proposals(self, memory, memory_padding_mask, spatial_shapes):
+ N_, S_, C_ = memory.shape
+ base_scale = 4.0
+ proposals = []
+ _cur = 0
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
+ mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
+ valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
+ valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
+
+ grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
+ torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
+ grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1)
+
+ scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
+ grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
+ wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
+ proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
+ proposals.append(proposal)
+ _cur += (H_ * W_)
+ output_proposals = torch.cat(proposals, 1)
+ output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
+ output_proposals = torch.log(output_proposals / (1 - output_proposals))
+ output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
+ output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
+
+ output_memory = memory
+ output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
+ output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
+ output_memory = self.enc_output_norm(self.enc_output(output_memory))
+ return output_memory, output_proposals
+
+ def get_valid_ratio(self, mask):
+ _, H, W = mask.shape
+ valid_H = torch.sum(~mask[:, :, 0], 1)
+ valid_W = torch.sum(~mask[:, 0, :], 1)
+ valid_ratio_h = valid_H.float() / H
+ valid_ratio_w = valid_W.float() / W
+ valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1)
+ return valid_ratio
+
+ def forward(self, srcs, masks, pos_embeds, query_embed=None):
+ """
+ Input:
+ - srcs: List([bs, c, h, w])
+ - masks: List([bs, h, w])
+ """
+ assert self.two_stage or query_embed is not None
+
+ # prepare input for encoder
+ src_flatten = []
+ mask_flatten = []
+ lvl_pos_embed_flatten = []
+ spatial_shapes = []
+ for lvl, (src, mask, pos_embed) in enumerate(zip(srcs, masks, pos_embeds)):
+ bs, c, h, w = src.shape
+ spatial_shape = (h, w)
+ spatial_shapes.append(spatial_shape)
+
+ src = src.flatten(2).transpose(1, 2) # bs, hw, c
+ mask = mask.flatten(1) # bs, hw
+ pos_embed = pos_embed.flatten(2).transpose(1, 2) # bs, hw, c
+ lvl_pos_embed = pos_embed + self.level_embed[lvl].view(1, 1, -1)
+ lvl_pos_embed_flatten.append(lvl_pos_embed)
+ src_flatten.append(src)
+ mask_flatten.append(mask)
+ src_flatten = torch.cat(src_flatten, 1) # bs, \sum{hxw}, c
+ mask_flatten = torch.cat(mask_flatten, 1) # bs, \sum{hxw}
+ lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1)
+ spatial_shapes = torch.as_tensor(spatial_shapes, dtype=torch.long, device=src_flatten.device)
+ level_start_index = torch.cat((spatial_shapes.new_zeros((1, )), spatial_shapes.prod(1).cumsum(0)[:-1]))
+ valid_ratios = torch.stack([self.get_valid_ratio(m) for m in masks], 1)
+
+ # encoder
+ memory = self.encoder(src_flatten, spatial_shapes, level_start_index, valid_ratios, lvl_pos_embed_flatten, mask_flatten)
+ # import ipdb; ipdb.set_trace()
+
+ # prepare input for decoder
+ bs, _, c = memory.shape
+ if self.two_stage:
+ output_memory, output_proposals = self.gen_encoder_output_proposals(memory, mask_flatten, spatial_shapes)
+
+ # hack implementation for two-stage Deformable DETR
+ enc_outputs_class = self.decoder.class_embed[self.decoder.num_layers](output_memory)
+ enc_outputs_coord_unact = self.decoder.bbox_embed[self.decoder.num_layers](output_memory) + output_proposals
+
+ topk = self.two_stage_num_proposals
+ topk_proposals = torch.topk(enc_outputs_class[..., 0], topk, dim=1)[1]
+ topk_coords_unact = torch.gather(enc_outputs_coord_unact, 1, topk_proposals.unsqueeze(-1).repeat(1, 1, 4))
+ topk_coords_unact = topk_coords_unact.detach()
+ reference_points = topk_coords_unact.sigmoid()
+ init_reference_out = reference_points
+ pos_trans_out = self.pos_trans_norm(self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact)))
+ query_embed, tgt = torch.split(pos_trans_out, c, dim=2)
+ elif self.use_dab:
+ reference_points = query_embed[..., self.d_model:].sigmoid()
+ tgt = query_embed[..., :self.d_model]
+ tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
+ init_reference_out = reference_points
+ else:
+ query_embed, tgt = torch.split(query_embed, c, dim=1)
+ query_embed = query_embed.unsqueeze(0).expand(bs, -1, -1)
+ tgt = tgt.unsqueeze(0).expand(bs, -1, -1)
+ reference_points = self.reference_points(query_embed).sigmoid()
+ # bs, num_quires, 2
+ init_reference_out = reference_points
+
+ # decoder
+ # import ipdb; ipdb.set_trace()
+ hs, inter_references = self.decoder(tgt, reference_points, memory,
+ spatial_shapes, level_start_index, valid_ratios,
+ query_pos=query_embed if not self.use_dab else None,
+ src_padding_mask=mask_flatten)
+
+ inter_references_out = inter_references
+ if self.two_stage:
+ return hs, init_reference_out, inter_references_out, enc_outputs_class, enc_outputs_coord_unact
+ return hs, init_reference_out, inter_references_out, None, None
+
+
+class DeformableTransformerEncoderLayer(nn.Module):
+ def __init__(self,
+ d_model=256, d_ffn=1024,
+ dropout=0.1, activation="relu",
+ n_levels=4, n_heads=8, n_points=4,
+ add_channel_attention=False,
+ use_deformable_box_attn=False,
+ box_attn_type='roi_align',
+ ):
+ super().__init__()
+
+ # self attention
+ if use_deformable_box_attn:
+ self.self_attn = MSDeformableBoxAttention(d_model, n_levels, n_heads, n_boxes=n_points, used_func=box_attn_type)
+ else:
+ self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ self.dropout1 = nn.Dropout(dropout)
+ self.norm1 = nn.LayerNorm(d_model)
+
+ # ffn
+ self.linear1 = nn.Linear(d_model, d_ffn)
+ self.activation = _get_activation_fn(activation, d_model=d_ffn)
+ self.dropout2 = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(d_ffn, d_model)
+ self.dropout3 = nn.Dropout(dropout)
+ self.norm2 = nn.LayerNorm(d_model)
+
+ # channel attention
+ self.add_channel_attention = add_channel_attention
+ if add_channel_attention:
+ self.activ_channel = _get_activation_fn('dyrelu', d_model=d_model)
+ self.norm_channel = nn.LayerNorm(d_model)
+
+ @staticmethod
+ def with_pos_embed(tensor, pos):
+ return tensor if pos is None else tensor + pos
+
+ def forward_ffn(self, src):
+ src2 = self.linear2(self.dropout2(self.activation(self.linear1(src))))
+ src = src + self.dropout3(src2)
+ src = self.norm2(src)
+ return src
+
+ def forward(self, src, pos, reference_points, spatial_shapes, level_start_index, key_padding_mask=None):
+ # self attention
+ # import ipdb; ipdb.set_trace()
+ src2 = self.self_attn(self.with_pos_embed(src, pos), reference_points, src, spatial_shapes, level_start_index, key_padding_mask)
+ src = src + self.dropout1(src2)
+ src = self.norm1(src)
+
+ # ffn
+ src = self.forward_ffn(src)
+
+ # channel attn
+ if self.add_channel_attention:
+ src = self.norm_channel(src + self.activ_channel(src))
+
+ return src
+
+
+class DeformableTransformerEncoder(nn.Module):
+ def __init__(self, encoder_layer, num_layers, norm=None):
+ super().__init__()
+ if num_layers > 0:
+ self.layers = _get_clones(encoder_layer, num_layers)
+ else:
+ self.layers = []
+ del encoder_layer
+ self.num_layers = num_layers
+ self.norm = norm
+
+ @staticmethod
+ def get_reference_points(spatial_shapes, valid_ratios, device):
+ reference_points_list = []
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
+
+ ref_y, ref_x = torch.meshgrid(torch.linspace(0.5, H_ - 0.5, H_, dtype=torch.float32, device=device),
+ torch.linspace(0.5, W_ - 0.5, W_, dtype=torch.float32, device=device))
+ ref_y = ref_y.reshape(-1)[None] / (valid_ratios[:, None, lvl, 1] * H_)
+ ref_x = ref_x.reshape(-1)[None] / (valid_ratios[:, None, lvl, 0] * W_)
+ ref = torch.stack((ref_x, ref_y), -1)
+ reference_points_list.append(ref)
+ reference_points = torch.cat(reference_points_list, 1)
+ reference_points = reference_points[:, :, None] * valid_ratios[:, None]
+ return reference_points
+
+ def forward(self, src, spatial_shapes, level_start_index, valid_ratios, pos=None, padding_mask=None):
+ """
+ Input:
+ - src: [bs, sum(hi*wi), 256]
+ - spatial_shapes: h,w of each level [num_level, 2]
+ - level_start_index: [num_level] start point of level in sum(hi*wi).
+ - valid_ratios: [bs, num_level, 2]
+ - pos: pos embed for src. [bs, sum(hi*wi), 256]
+ - padding_mask: [bs, sum(hi*wi)]
+ Intermedia:
+ - reference_points: [bs, sum(hi*wi), num_lebel, 2]
+ """
+ output = src
+ # bs, sum(hi*wi), 256
+ # import ipdb; ipdb.set_trace()
+ if self.num_layers > 0:
+ reference_points = self.get_reference_points(spatial_shapes, valid_ratios, device=src.device)
+ for _, layer in enumerate(self.layers):
+ output = layer(output, pos, reference_points, spatial_shapes, level_start_index, padding_mask)
+
+ if self.norm is not None:
+ output = self.norm(output)
+
+ return output
+
+
+class DeformableTransformerDecoderLayer(nn.Module):
+ def __init__(self, d_model=256, d_ffn=1024,
+ dropout=0.1, activation="relu",
+ n_levels=4, n_heads=8, n_points=4,
+ use_deformable_box_attn=False,
+ box_attn_type='roi_align',
+ key_aware_type=None,
+ decoder_sa_type='ca',
+ module_seq=['sa', 'ca', 'ffn'],
+ ):
+ super().__init__()
+ self.module_seq = module_seq
+ assert sorted(module_seq) == ['ca', 'ffn', 'sa']
+
+ # cross attention
+ # self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ if use_deformable_box_attn:
+ self.cross_attn = MSDeformableBoxAttention(d_model, n_levels, n_heads, n_boxes=n_points, used_func=box_attn_type)
+ else:
+ self.cross_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+ self.dropout1 = nn.Dropout(dropout)
+ self.norm1 = nn.LayerNorm(d_model)
+
+ # self attention
+ self.self_attn = nn.MultiheadAttention(d_model, n_heads, dropout=dropout)
+ self.dropout2 = nn.Dropout(dropout)
+ self.norm2 = nn.LayerNorm(d_model)
+
+ # ffn
+ self.linear1 = nn.Linear(d_model, d_ffn)
+ self.activation = _get_activation_fn(activation, d_model=d_ffn, batch_dim=1)
+ self.dropout3 = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(d_ffn, d_model)
+ self.dropout4 = nn.Dropout(dropout)
+ self.norm3 = nn.LayerNorm(d_model)
+
+ self.key_aware_type = key_aware_type
+ self.key_aware_proj = None
+ self.decoder_sa_type = decoder_sa_type
+ assert decoder_sa_type in ['sa', 'ca_label', 'ca_content']
+
+ if decoder_sa_type == 'ca_content':
+ self.self_attn = MSDeformAttn(d_model, n_levels, n_heads, n_points)
+
+
+
+
+ def rm_self_attn_modules(self):
+ self.self_attn = None
+ self.dropout2 = None
+ self.norm2 = None
+
+
+ @staticmethod
+ def with_pos_embed(tensor, pos):
+ return tensor if pos is None else tensor + pos
+
+ def forward_ffn(self, tgt):
+ tgt2 = self.linear2(self.dropout3(self.activation(self.linear1(tgt))))
+ tgt = tgt + self.dropout4(tgt2)
+ tgt = self.norm3(tgt)
+ return tgt
+
+ def forward_sa(self,
+ # for tgt
+ tgt: Optional[Tensor], # nq, bs, d_model
+ tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
+ tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
+
+ # for memory
+ memory: Optional[Tensor] = None, # hw, bs, d_model
+ memory_key_padding_mask: Optional[Tensor] = None,
+ memory_level_start_index: Optional[Tensor] = None, # num_levels
+ memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
+ memory_pos: Optional[Tensor] = None, # pos for memory
+
+ # sa
+ self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
+ cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
+ ):
+ # self attention
+ if self.self_attn is not None:
+ # import ipdb; ipdb.set_trace()
+ if self.decoder_sa_type == 'sa':
+ q = k = self.with_pos_embed(tgt, tgt_query_pos)
+ tgt2 = self.self_attn(q, k, tgt, attn_mask=self_attn_mask)[0]
+ tgt = tgt + self.dropout2(tgt2)
+ tgt = self.norm2(tgt)
+ elif self.decoder_sa_type == 'ca_label':
+ # import ipdb; ipdb.set_trace()
+ # q = self.with_pos_embed(tgt, tgt_query_pos)
+ bs = tgt.shape[1]
+ k = v = self.label_embedding.weight[:, None, :].repeat(1, bs, 1)
+ tgt2 = self.self_attn(tgt, k, v, attn_mask=self_attn_mask)[0]
+ tgt = tgt + self.dropout2(tgt2)
+ tgt = self.norm2(tgt)
+ elif self.decoder_sa_type == 'ca_content':
+ tgt2 = self.self_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
+ tgt_reference_points.transpose(0, 1).contiguous(),
+ memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index, memory_key_padding_mask).transpose(0, 1)
+ tgt = tgt + self.dropout2(tgt2)
+ tgt = self.norm2(tgt)
+ else:
+ raise NotImplementedError("Unknown decoder_sa_type {}".format(self.decoder_sa_type))
+
+ return tgt
+
+ def forward_ca(self,
+ # for tgt
+ tgt: Optional[Tensor], # nq, bs, d_model
+ tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
+ tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
+
+ # for memory
+ memory: Optional[Tensor] = None, # hw, bs, d_model
+ memory_key_padding_mask: Optional[Tensor] = None,
+ memory_level_start_index: Optional[Tensor] = None, # num_levels
+ memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
+ memory_pos: Optional[Tensor] = None, # pos for memory
+
+ # sa
+ self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
+ cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
+ ):
+ # cross attention
+ # import ipdb; ipdb.set_trace()
+ if self.key_aware_type is not None:
+
+ if self.key_aware_type == 'mean':
+ tgt = tgt + memory.mean(0, keepdim=True)
+ elif self.key_aware_type == 'proj_mean':
+ tgt = tgt + self.key_aware_proj(memory).mean(0, keepdim=True)
+ else:
+ raise NotImplementedError("Unknown key_aware_type: {}".format(self.key_aware_type))
+ tgt2 = self.cross_attn(self.with_pos_embed(tgt, tgt_query_pos).transpose(0, 1),
+ tgt_reference_points.transpose(0, 1).contiguous(),
+ memory.transpose(0, 1), memory_spatial_shapes, memory_level_start_index, memory_key_padding_mask).transpose(0, 1)
+ tgt = tgt + self.dropout1(tgt2)
+ tgt = self.norm1(tgt)
+
+ return tgt
+
+ def forward(self,
+ # for tgt
+ tgt: Optional[Tensor], # nq, bs, d_model
+ tgt_query_pos: Optional[Tensor] = None, # pos for query. MLP(Sine(pos))
+ tgt_query_sine_embed: Optional[Tensor] = None, # pos for query. Sine(pos)
+ tgt_key_padding_mask: Optional[Tensor] = None,
+ tgt_reference_points: Optional[Tensor] = None, # nq, bs, 4
+
+ # for memory
+ memory: Optional[Tensor] = None, # hw, bs, d_model
+ memory_key_padding_mask: Optional[Tensor] = None,
+ memory_level_start_index: Optional[Tensor] = None, # num_levels
+ memory_spatial_shapes: Optional[Tensor] = None, # bs, num_levels, 2
+ memory_pos: Optional[Tensor] = None, # pos for memory
+
+ # sa
+ self_attn_mask: Optional[Tensor] = None, # mask used for self-attention
+ cross_attn_mask: Optional[Tensor] = None, # mask used for cross-attention
+ ):
+
+ for funcname in self.module_seq:
+ # if os.environ.get('IPDB_DEBUG_SHILONG') == 'INFO':
+ # import ipdb; ipdb.set_trace()
+ if funcname == 'ffn':
+ tgt = self.forward_ffn(tgt)
+ elif funcname == 'ca':
+ tgt = self.forward_ca(tgt, tgt_query_pos, tgt_query_sine_embed, \
+ tgt_key_padding_mask, tgt_reference_points, \
+ memory, memory_key_padding_mask, memory_level_start_index, \
+ memory_spatial_shapes, memory_pos, self_attn_mask, cross_attn_mask)
+ elif funcname == 'sa':
+ tgt = self.forward_sa(tgt, tgt_query_pos, tgt_query_sine_embed, \
+ tgt_key_padding_mask, tgt_reference_points, \
+ memory, memory_key_padding_mask, memory_level_start_index, \
+ memory_spatial_shapes, memory_pos, self_attn_mask, cross_attn_mask)
+ else:
+ raise ValueError('unknown funcname {}'.format(funcname))
+
+ return tgt
+
+
+
+class DeformableTransformerDecoder(nn.Module):
+ def __init__(self, decoder_layer, num_layers, return_intermediate=False, use_dab=False, d_model=256, query_dim=4):
+ super().__init__()
+ self.layers = _get_clones(decoder_layer, num_layers)
+ self.num_layers = num_layers
+ self.return_intermediate = return_intermediate
+ assert return_intermediate
+ # hack implementation for iterative bounding box refinement and two-stage Deformable DETR
+ self.bbox_embed = None
+ self.class_embed = None
+ self.use_dab = use_dab
+ self.d_model = d_model
+ self.query_dim = query_dim
+ if use_dab:
+ self.query_scale = MLP(d_model, d_model, d_model, 2)
+ self.ref_point_head = MLP(2 * d_model, d_model, d_model, 2)
+
+
+ def forward(self, tgt, reference_points, src, src_spatial_shapes,
+ src_level_start_index, src_valid_ratios,
+ query_pos=None, src_padding_mask=None):
+ output = tgt
+ if self.use_dab:
+ assert query_pos is None
+
+ intermediate = []
+ intermediate_reference_points = [reference_points]
+ for layer_id, layer in enumerate(self.layers):
+ # import ipdb; ipdb.set_trace()
+ if reference_points.shape[-1] == 4:
+ reference_points_input = reference_points[:, :, None] \
+ * torch.cat([src_valid_ratios, src_valid_ratios], -1)[:, None] # bs, nq, 4, 4
+ else:
+ assert reference_points.shape[-1] == 2
+ reference_points_input = reference_points[:, :, None] * src_valid_ratios[:, None]
+
+ if self.use_dab:
+ # import ipdb; ipdb.set_trace()
+ query_sine_embed = gen_sineembed_for_position(reference_points_input[:, :, 0, :]) # bs, nq, 256*2
+ raw_query_pos = self.ref_point_head(query_sine_embed) # bs, nq, 256
+ pos_scale = self.query_scale(output) if layer_id != 0 else 1
+ query_pos = pos_scale * raw_query_pos
+
+ output = layer(output, query_pos, reference_points_input, src, src_spatial_shapes, src_level_start_index, src_padding_mask)
+
+ # hack implementation for iterative bounding box refinement
+ if self.bbox_embed is not None:
+ box_holder = self.bbox_embed(output)
+ box_holder[..., :self.query_dim] += inverse_sigmoid(reference_points)
+ new_reference_points = box_holder[..., :self.query_dim].sigmoid()
+ reference_points = new_reference_points.detach()
+ if layer_id != self.num_layers - 1:
+ intermediate_reference_points.append(new_reference_points)
+
+ intermediate.append(output)
+
+ return torch.stack(intermediate), torch.stack(intermediate_reference_points)
+
+
+def _get_clones(module, N):
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def build_deforamble_transformer(args):
+ return DeformableTransformer(
+ d_model=args.hidden_dim,
+ nhead=args.nheads,
+ num_encoder_layers=args.enc_layers,
+ num_decoder_layers=args.dec_layers,
+ dim_feedforward=args.dim_feedforward,
+ dropout=args.dropout,
+ activation="relu",
+ return_intermediate_dec=True,
+ num_feature_levels=args.ddetr_num_feature_levels,
+ dec_n_points=args.ddetr_dec_n_points,
+ enc_n_points=args.ddetr_enc_n_points,
+ two_stage=args.ddetr_two_stage,
+ two_stage_num_proposals=args.num_queries,
+ use_dab=args.ddetr_use_dab,
+ high_dim_query_update=args.ddetr_high_dim_query_update,
+ no_sine_embed=args.ddetr_no_sine_embed)
diff --git a/src/utils/dependencies/XPose/models/UniPose/transformer_vanilla.py b/src/utils/dependencies/XPose/models/UniPose/transformer_vanilla.py
new file mode 100644
index 0000000..450885a
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/transformer_vanilla.py
@@ -0,0 +1,102 @@
+# Copyright (c) Aishwarya Kamath & Nicolas Carion. Licensed under the Apache License 2.0. All Rights Reserved
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+DETR Transformer class.
+
+Copy-paste from torch.nn.Transformer with modifications:
+ * positional encodings are passed in MHattention
+ * extra LN at the end of encoder is removed
+ * decoder returns a stack of activations from all decoding layers
+"""
+import torch
+from torch import Tensor, nn
+from typing import List, Optional
+
+from .utils import _get_activation_fn, _get_clones
+
+
+class TextTransformer(nn.Module):
+ def __init__(self, num_layers, d_model=256, nheads=8, dim_feedforward=2048, dropout=0.1):
+ super().__init__()
+ self.num_layers = num_layers
+ self.d_model = d_model
+ self.nheads = nheads
+ self.dim_feedforward = dim_feedforward
+ self.norm = None
+
+ single_encoder_layer = TransformerEncoderLayer(d_model=d_model, nhead=nheads, dim_feedforward=dim_feedforward, dropout=dropout)
+ self.layers = _get_clones(single_encoder_layer, num_layers)
+
+
+ def forward(self, memory_text:torch.Tensor, text_attention_mask:torch.Tensor):
+ """
+
+ Args:
+ text_attention_mask: bs, num_token
+ memory_text: bs, num_token, d_model
+
+ Raises:
+ RuntimeError: _description_
+
+ Returns:
+ output: bs, num_token, d_model
+ """
+
+ output = memory_text.transpose(0, 1)
+
+ for layer in self.layers:
+ output = layer(output, src_key_padding_mask=text_attention_mask)
+
+ if self.norm is not None:
+ output = self.norm(output)
+
+ return output.transpose(0, 1)
+
+
+
+
+class TransformerEncoderLayer(nn.Module):
+ def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu", normalize_before=False):
+ super().__init__()
+ self.self_attn = nn.MultiheadAttention(d_model, nhead, dropout=dropout)
+ # Implementation of Feedforward model
+ self.linear1 = nn.Linear(d_model, dim_feedforward)
+ self.dropout = nn.Dropout(dropout)
+ self.linear2 = nn.Linear(dim_feedforward, d_model)
+
+ self.norm1 = nn.LayerNorm(d_model)
+ self.norm2 = nn.LayerNorm(d_model)
+ self.dropout1 = nn.Dropout(dropout)
+ self.dropout2 = nn.Dropout(dropout)
+
+ self.activation = _get_activation_fn(activation)
+ self.normalize_before = normalize_before
+ self.nhead = nhead
+
+ def with_pos_embed(self, tensor, pos: Optional[Tensor]):
+ return tensor if pos is None else tensor + pos
+
+ def forward(
+ self,
+ src,
+ src_mask: Optional[Tensor] = None,
+ src_key_padding_mask: Optional[Tensor] = None,
+ pos: Optional[Tensor] = None,
+ ):
+ # repeat attn mask
+ if src_mask.dim() == 3 and src_mask.shape[0] == src.shape[1]:
+ # bs, num_q, num_k
+ src_mask = src_mask.repeat(self.nhead, 1, 1)
+
+ q = k = self.with_pos_embed(src, pos)
+
+ src2 = self.self_attn(q, k, value=src, attn_mask=src_mask)[0]
+
+ # src2 = self.self_attn(q, k, value=src, attn_mask=src_mask, key_padding_mask=src_key_padding_mask)[0]
+ src = src + self.dropout1(src2)
+ src = self.norm1(src)
+ src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
+ src = src + self.dropout2(src2)
+ src = self.norm2(src)
+ return src
+
diff --git a/src/utils/dependencies/XPose/models/UniPose/unipose.py b/src/utils/dependencies/XPose/models/UniPose/unipose.py
new file mode 100644
index 0000000..d05c94c
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/unipose.py
@@ -0,0 +1,621 @@
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Modified from Deformable DETR (https://github.com/fundamentalvision/Deformable-DETR)
+# Copyright (c) 2020 SenseTime. All Rights Reserved.
+# ------------------------------------------------------------------------
+import os
+import copy
+import torch
+import torch.nn.functional as F
+from torch import nn
+from typing import List
+
+from util.keypoint_ops import keypoint_xyzxyz_to_xyxyzz
+from util.misc import NestedTensor, nested_tensor_from_tensor_list,inverse_sigmoid
+
+from .utils import MLP
+from .backbone import build_backbone
+from ..registry import MODULE_BUILD_FUNCS
+from .mask_generate import prepare_for_mask, post_process
+from .deformable_transformer import build_deformable_transformer
+
+
+class UniPose(nn.Module):
+ """ This is the Cross-Attention Detector module that performs object detection """
+
+ def __init__(self, backbone, transformer, num_classes, num_queries,
+ aux_loss=False, iter_update=False,
+ query_dim=2,
+ random_refpoints_xy=False,
+ fix_refpoints_hw=-1,
+ num_feature_levels=1,
+ nheads=8,
+ # two stage
+ two_stage_type='no', # ['no', 'standard']
+ two_stage_add_query_num=0,
+ dec_pred_class_embed_share=True,
+ dec_pred_bbox_embed_share=True,
+ two_stage_class_embed_share=True,
+ two_stage_bbox_embed_share=True,
+ decoder_sa_type='sa',
+ num_patterns=0,
+ dn_number=100,
+ dn_box_noise_scale=0.4,
+ dn_label_noise_ratio=0.5,
+ dn_labelbook_size=100,
+ use_label_enc=True,
+
+ text_encoder_type='bert-base-uncased',
+
+ binary_query_selection=False,
+ use_cdn=True,
+ sub_sentence_present=True,
+ num_body_points=68,
+ num_box_decoder_layers=2,
+ ):
+ """ Initializes the model.
+ Parameters:
+ backbone: torch module of the backbone to be used. See backbone.py
+ transformer: torch module of the transformer architecture. See transformer.py
+ num_classes: number of object classes
+ num_queries: number of object queries, ie detection slot. This is the maximal number of objects
+ Conditional DETR can detect in a single image. For COCO, we recommend 100 queries.
+ aux_loss: True if auxiliary decoding losses (loss at each decoder layer) are to be used.
+
+ fix_refpoints_hw: -1(default): learn w and h for each box seperately
+ >0 : given fixed number
+ -2 : learn a shared w and h
+ """
+ super().__init__()
+ self.num_queries = num_queries
+ self.transformer = transformer
+ self.num_classes = num_classes
+ self.hidden_dim = hidden_dim = transformer.d_model
+ self.num_feature_levels = num_feature_levels
+ self.nheads = nheads
+ self.use_label_enc = use_label_enc
+ if use_label_enc:
+ self.label_enc = nn.Embedding(dn_labelbook_size + 1, hidden_dim)
+ else:
+ raise NotImplementedError
+ self.label_enc = None
+ self.max_text_len = 256
+ self.binary_query_selection = binary_query_selection
+ self.sub_sentence_present = sub_sentence_present
+
+ # setting query dim
+ self.query_dim = query_dim
+ assert query_dim == 4
+ self.random_refpoints_xy = random_refpoints_xy
+ self.fix_refpoints_hw = fix_refpoints_hw
+
+ # for dn training
+ self.num_patterns = num_patterns
+ self.dn_number = dn_number
+ self.dn_box_noise_scale = dn_box_noise_scale
+ self.dn_label_noise_ratio = dn_label_noise_ratio
+ self.dn_labelbook_size = dn_labelbook_size
+ self.use_cdn = use_cdn
+
+
+ self.projection = MLP(512, hidden_dim, hidden_dim, 3)
+
+ self.projection_kpt = MLP(512, hidden_dim, hidden_dim, 3)
+
+
+ device = "cuda" if torch.cuda.is_available() else "cpu"
+ # model, _ = clip.load("ViT-B/32", device=device)
+ # self.clip_model = model
+ # visual_parameters = list(self.clip_model.visual.parameters())
+ # #
+ # for param in visual_parameters:
+ # param.requires_grad = False
+
+ self.pos_proj = nn.Linear(hidden_dim, 768)
+ self.padding = nn.Embedding(1, 768)
+
+ # prepare input projection layers
+ if num_feature_levels > 1:
+ num_backbone_outs = len(backbone.num_channels)
+ input_proj_list = []
+ for _ in range(num_backbone_outs):
+ in_channels = backbone.num_channels[_]
+ input_proj_list.append(nn.Sequential(
+ nn.Conv2d(in_channels, hidden_dim, kernel_size=1),
+ nn.GroupNorm(32, hidden_dim),
+ ))
+ for _ in range(num_feature_levels - num_backbone_outs):
+ input_proj_list.append(nn.Sequential(
+ nn.Conv2d(in_channels, hidden_dim, kernel_size=3, stride=2, padding=1),
+ nn.GroupNorm(32, hidden_dim),
+ ))
+ in_channels = hidden_dim
+ self.input_proj = nn.ModuleList(input_proj_list)
+ else:
+ assert two_stage_type == 'no', "two_stage_type should be no if num_feature_levels=1 !!!"
+ self.input_proj = nn.ModuleList([
+ nn.Sequential(
+ nn.Conv2d(backbone.num_channels[-1], hidden_dim, kernel_size=1),
+ nn.GroupNorm(32, hidden_dim),
+ )])
+
+ self.backbone = backbone
+ self.aux_loss = aux_loss
+ self.box_pred_damping = box_pred_damping = None
+
+ self.iter_update = iter_update
+ assert iter_update, "Why not iter_update?"
+
+ # prepare pred layers
+ self.dec_pred_class_embed_share = dec_pred_class_embed_share
+ self.dec_pred_bbox_embed_share = dec_pred_bbox_embed_share
+ # prepare class & box embed
+ _class_embed = ContrastiveAssign()
+
+
+
+ _bbox_embed = MLP(hidden_dim, hidden_dim, 4, 3)
+ nn.init.constant_(_bbox_embed.layers[-1].weight.data, 0)
+ nn.init.constant_(_bbox_embed.layers[-1].bias.data, 0)
+
+ _pose_embed = MLP(hidden_dim, hidden_dim, 2, 3)
+ _pose_hw_embed = MLP(hidden_dim, hidden_dim, 2, 3)
+ nn.init.constant_(_pose_embed.layers[-1].weight.data, 0)
+ nn.init.constant_(_pose_embed.layers[-1].bias.data, 0)
+
+ if dec_pred_bbox_embed_share:
+ box_embed_layerlist = [_bbox_embed for i in range(transformer.num_decoder_layers)]
+ else:
+ box_embed_layerlist = [copy.deepcopy(_bbox_embed) for i in range(transformer.num_decoder_layers)]
+ if dec_pred_class_embed_share:
+ class_embed_layerlist = [_class_embed for i in range(transformer.num_decoder_layers)]
+ else:
+ class_embed_layerlist = [copy.deepcopy(_class_embed) for i in range(transformer.num_decoder_layers)]
+
+
+ if dec_pred_bbox_embed_share:
+
+ pose_embed_layerlist = [_pose_embed for i in
+ range(transformer.num_decoder_layers - num_box_decoder_layers + 1)]
+ else:
+ pose_embed_layerlist = [copy.deepcopy(_pose_embed) for i in
+ range(transformer.num_decoder_layers - num_box_decoder_layers + 1)]
+
+ pose_hw_embed_layerlist = [_pose_hw_embed for i in
+ range(transformer.num_decoder_layers - num_box_decoder_layers)]
+
+
+ self.num_box_decoder_layers = num_box_decoder_layers
+ self.bbox_embed = nn.ModuleList(box_embed_layerlist)
+ self.class_embed = nn.ModuleList(class_embed_layerlist)
+ self.num_body_points = num_body_points
+ self.pose_embed = nn.ModuleList(pose_embed_layerlist)
+ self.pose_hw_embed = nn.ModuleList(pose_hw_embed_layerlist)
+
+ self.transformer.decoder.bbox_embed = self.bbox_embed
+ self.transformer.decoder.class_embed = self.class_embed
+
+ self.transformer.decoder.pose_embed = self.pose_embed
+ self.transformer.decoder.pose_hw_embed = self.pose_hw_embed
+
+ self.transformer.decoder.num_body_points = num_body_points
+
+
+ # two stage
+ self.two_stage_type = two_stage_type
+ self.two_stage_add_query_num = two_stage_add_query_num
+ assert two_stage_type in ['no', 'standard'], "unknown param {} of two_stage_type".format(two_stage_type)
+ if two_stage_type != 'no':
+ if two_stage_bbox_embed_share:
+ assert dec_pred_class_embed_share and dec_pred_bbox_embed_share
+ self.transformer.enc_out_bbox_embed = _bbox_embed
+ else:
+ self.transformer.enc_out_bbox_embed = copy.deepcopy(_bbox_embed)
+
+ if two_stage_class_embed_share:
+ assert dec_pred_class_embed_share and dec_pred_bbox_embed_share
+ self.transformer.enc_out_class_embed = _class_embed
+ else:
+ self.transformer.enc_out_class_embed = copy.deepcopy(_class_embed)
+
+ self.refpoint_embed = None
+ if self.two_stage_add_query_num > 0:
+ self.init_ref_points(two_stage_add_query_num)
+
+ self.decoder_sa_type = decoder_sa_type
+ assert decoder_sa_type in ['sa', 'ca_label', 'ca_content']
+ # self.replace_sa_with_double_ca = replace_sa_with_double_ca
+ if decoder_sa_type == 'ca_label':
+ self.label_embedding = nn.Embedding(num_classes, hidden_dim)
+ for layer in self.transformer.decoder.layers:
+ layer.label_embedding = self.label_embedding
+ else:
+ for layer in self.transformer.decoder.layers:
+ layer.label_embedding = None
+ self.label_embedding = None
+
+ self._reset_parameters()
+
+ def open_set_transfer_init(self):
+ for name, param in self.named_parameters():
+ if 'fusion_layers' in name:
+ continue
+ if 'ca_text' in name:
+ continue
+ if 'catext_norm' in name:
+ continue
+ if 'catext_dropout' in name:
+ continue
+ if "text_layers" in name:
+ continue
+ if 'bert' in name:
+ continue
+ if 'bbox_embed' in name:
+ continue
+ if 'label_enc.weight' in name:
+ continue
+ if 'feat_map' in name:
+ continue
+ if 'enc_output' in name:
+ continue
+
+ param.requires_grad_(False)
+
+ # import ipdb; ipdb.set_trace()
+
+ def _reset_parameters(self):
+ # init input_proj
+ for proj in self.input_proj:
+ nn.init.xavier_uniform_(proj[0].weight, gain=1)
+ nn.init.constant_(proj[0].bias, 0)
+
+ def init_ref_points(self, use_num_queries):
+ self.refpoint_embed = nn.Embedding(use_num_queries, self.query_dim)
+
+ if self.random_refpoints_xy:
+ # import ipdb; ipdb.set_trace()
+ self.refpoint_embed.weight.data[:, :2].uniform_(0, 1)
+ self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2])
+ self.refpoint_embed.weight.data[:, :2].requires_grad = False
+
+ if self.fix_refpoints_hw > 0:
+ print("fix_refpoints_hw: {}".format(self.fix_refpoints_hw))
+ assert self.random_refpoints_xy
+ self.refpoint_embed.weight.data[:, 2:] = self.fix_refpoints_hw
+ self.refpoint_embed.weight.data[:, 2:] = inverse_sigmoid(self.refpoint_embed.weight.data[:, 2:])
+ self.refpoint_embed.weight.data[:, 2:].requires_grad = False
+ elif int(self.fix_refpoints_hw) == -1:
+ pass
+ elif int(self.fix_refpoints_hw) == -2:
+ print('learn a shared h and w')
+ assert self.random_refpoints_xy
+ self.refpoint_embed = nn.Embedding(use_num_queries, 2)
+ self.refpoint_embed.weight.data[:, :2].uniform_(0, 1)
+ self.refpoint_embed.weight.data[:, :2] = inverse_sigmoid(self.refpoint_embed.weight.data[:, :2])
+ self.refpoint_embed.weight.data[:, :2].requires_grad = False
+ self.hw_embed = nn.Embedding(1, 1)
+ else:
+ raise NotImplementedError('Unknown fix_refpoints_hw {}'.format(self.fix_refpoints_hw))
+
+ def forward(self, samples: NestedTensor, targets: List = None, **kw):
+ """ The forward expects a NestedTensor, which consists of:
+ - samples.tensor: batched images, of shape [batch_size x 3 x H x W]
+ - samples.mask: a binary mask of shape [batch_size x H x W], containing 1 on padded pixels
+
+ It returns a dict with the following elements:
+ - "pred_logits": the classification logits (including no-object) for all queries.
+ Shape= [batch_size x num_queries x num_classes]
+ - "pred_boxes": The normalized boxes coordinates for all queries, represented as
+ (center_x, center_y, width, height). These values are normalized in [0, 1],
+ relative to the size of each individual image (disregarding possible padding).
+ See PostProcess for information on how to retrieve the unnormalized bounding box.
+ - "aux_outputs": Optional, only returned when auxilary losses are activated. It is a list of
+ dictionnaries containing the two above keys for each decoder layer.
+ """
+
+ captions = [t['instance_text_prompt'] for t in targets]
+ bs=len(captions)
+ tensor_list = [tgt["object_embeddings_text"] for tgt in targets]
+ max_size = 350
+ padded_tensors = [torch.cat([tensor, torch.zeros(max_size - tensor.size(0), tensor.size(1),device=tensor.device)]) if tensor.size(0) < max_size else tensor for tensor in tensor_list]
+ object_embeddings_text = torch.stack(padded_tensors)
+
+ kpts_embeddings_text = torch.stack([tgt["kpts_embeddings_text"] for tgt in targets])[:, :self.num_body_points]
+ encoded_text=self.projection(object_embeddings_text) # bs, 81, 101, 256
+ kpt_embeddings_specific=self.projection_kpt(kpts_embeddings_text) # bs, 81, 101, 256
+
+
+ kpt_vis = torch.stack([tgt["kpt_vis_text"] for tgt in targets])[:, :self.num_body_points]
+ kpt_mask = torch.cat((torch.ones_like(kpt_vis, device=kpt_vis.device)[..., 0].unsqueeze(-1), kpt_vis), dim=-1)
+
+
+ num_classes = encoded_text.shape[1] # bs, 81, 101, 256
+ text_self_attention_masks = torch.eye(num_classes).unsqueeze(0).expand(bs, -1, -1).bool().to(samples.device)
+ text_token_mask = torch.zeros(samples.shape[0],num_classes).to(samples.device)>0
+ for i in range(bs):
+ text_token_mask[i,:len(captions[i])]=True
+
+ position_ids = torch.zeros(samples.shape[0], num_classes).to(samples.device)
+
+ for i in range(bs):
+ position_ids[i,:len(captions[i])]= 1
+
+
+ text_dict = {
+ 'encoded_text': encoded_text, # bs, 195, d_model
+ 'text_token_mask': text_token_mask, # bs, 195
+ 'position_ids': position_ids, # bs, 195
+ 'text_self_attention_masks': text_self_attention_masks # bs, 195,195
+ }
+
+
+ # import ipdb; ipdb.set_trace()
+
+ if isinstance(samples, (list, torch.Tensor)):
+ samples = nested_tensor_from_tensor_list(samples)
+ features, poss = self.backbone(samples)
+ if os.environ.get("SHILONG_AMP_INFNAN_DEBUG") == '1':
+ import ipdb;
+ ipdb.set_trace()
+
+
+ srcs = []
+ masks = []
+ for l, feat in enumerate(features):
+ src, mask = feat.decompose()
+ srcs.append(self.input_proj[l](src))
+ masks.append(mask)
+ assert mask is not None
+
+ if self.num_feature_levels > len(srcs):
+ _len_srcs = len(srcs)
+ for l in range(_len_srcs, self.num_feature_levels):
+ if l == _len_srcs:
+ src = self.input_proj[l](features[-1].tensors)
+ else:
+ src = self.input_proj[l](srcs[-1])
+ m = samples.mask
+ mask = F.interpolate(m[None].float(), size=src.shape[-2:]).to(torch.bool)[0]
+ pos_l = self.backbone[1](NestedTensor(src, mask)).to(src.dtype)
+ srcs.append(src)
+ masks.append(mask)
+ poss.append(pos_l)
+
+ if self.label_enc is not None:
+ label_enc = self.label_enc
+ else:
+ raise NotImplementedError
+ label_enc = encoded_text
+ if self.dn_number > 0 or targets is not None:
+ input_query_label, input_query_bbox, attn_mask, attn_mask2, dn_meta = \
+ prepare_for_mask(kpt_mask=kpt_mask)
+ else:
+ assert targets is None
+ input_query_bbox = input_query_label = attn_mask = attn_mask2 = dn_meta = None
+
+
+ hs, reference, hs_enc, ref_enc, init_box_proposal = self.transformer(srcs, masks, input_query_bbox, poss,
+ input_query_label, attn_mask, attn_mask2,
+ text_dict, dn_meta,targets,kpt_embeddings_specific)
+
+ # In case num object=0
+ if self.label_enc is not None:
+ hs[0] += self.label_enc.weight[0, 0] * 0.0
+
+ hs[0] += self.pos_proj.weight[0, 0] * 0.0
+ hs[0] += self.pos_proj.bias[0] * 0.0
+ hs[0] += self.padding.weight[0, 0] * 0.0
+
+ num_group = 50
+ effective_dn_number = dn_meta['pad_size'] if self.training else 0
+ outputs_coord_list = []
+ outputs_class = []
+
+
+ for dec_lid, (layer_ref_sig, layer_bbox_embed, layer_cls_embed, layer_hs) in enumerate(
+ zip(reference[:-1], self.bbox_embed, self.class_embed, hs)):
+
+
+ if dec_lid < self.num_box_decoder_layers:
+ layer_delta_unsig = layer_bbox_embed(layer_hs)
+ layer_outputs_unsig = layer_delta_unsig + inverse_sigmoid(layer_ref_sig)
+ layer_outputs_unsig = layer_outputs_unsig.sigmoid()
+ layer_cls = layer_cls_embed(layer_hs, text_dict)
+ outputs_coord_list.append(layer_outputs_unsig)
+ outputs_class.append(layer_cls)
+
+
+ else:
+
+ layer_hs_bbox_dn = layer_hs[:, :effective_dn_number, :]
+ layer_hs_bbox_norm = layer_hs[:, effective_dn_number:, :][:, 0::(self.num_body_points + 1), :]
+ bs = layer_ref_sig.shape[0]
+ reference_before_sigmoid_bbox_dn = layer_ref_sig[:, :effective_dn_number, :]
+ reference_before_sigmoid_bbox_norm = layer_ref_sig[:, effective_dn_number:, :][:,
+ 0::(self.num_body_points + 1), :]
+ layer_delta_unsig_dn = layer_bbox_embed(layer_hs_bbox_dn)
+ layer_delta_unsig_norm = layer_bbox_embed(layer_hs_bbox_norm)
+ layer_outputs_unsig_dn = layer_delta_unsig_dn + inverse_sigmoid(reference_before_sigmoid_bbox_dn)
+ layer_outputs_unsig_dn = layer_outputs_unsig_dn.sigmoid()
+ layer_outputs_unsig_norm = layer_delta_unsig_norm + inverse_sigmoid(reference_before_sigmoid_bbox_norm)
+ layer_outputs_unsig_norm = layer_outputs_unsig_norm.sigmoid()
+ layer_outputs_unsig = torch.cat((layer_outputs_unsig_dn, layer_outputs_unsig_norm), dim=1)
+ layer_cls_dn = layer_cls_embed(layer_hs_bbox_dn, text_dict)
+ layer_cls_norm = layer_cls_embed(layer_hs_bbox_norm, text_dict)
+ layer_cls = torch.cat((layer_cls_dn, layer_cls_norm), dim=1)
+ outputs_class.append(layer_cls)
+ outputs_coord_list.append(layer_outputs_unsig)
+
+ # update keypoints
+ outputs_keypoints_list = []
+ outputs_keypoints_hw = []
+ kpt_index = [x for x in range(num_group * (self.num_body_points + 1)) if x % (self.num_body_points + 1) != 0]
+ for dec_lid, (layer_ref_sig, layer_hs) in enumerate(zip(reference[:-1], hs)):
+ if dec_lid < self.num_box_decoder_layers:
+ assert isinstance(layer_hs, torch.Tensor)
+ bs = layer_hs.shape[0]
+ layer_res = layer_hs.new_zeros((bs, self.num_queries, self.num_body_points * 3))
+ outputs_keypoints_list.append(layer_res)
+ else:
+ bs = layer_ref_sig.shape[0]
+ layer_hs_kpt = layer_hs[:, effective_dn_number:, :].index_select(1, torch.tensor(kpt_index,
+ device=layer_hs.device))
+ delta_xy_unsig = self.pose_embed[dec_lid - self.num_box_decoder_layers](layer_hs_kpt)
+ layer_ref_sig_kpt = layer_ref_sig[:, effective_dn_number:, :].index_select(1, torch.tensor(kpt_index,
+ device=layer_hs.device))
+ layer_outputs_unsig_keypoints = delta_xy_unsig + inverse_sigmoid(layer_ref_sig_kpt[..., :2])
+ vis_xy_unsig = torch.ones_like(layer_outputs_unsig_keypoints,
+ device=layer_outputs_unsig_keypoints.device)
+ xyv = torch.cat((layer_outputs_unsig_keypoints, vis_xy_unsig[:, :, 0].unsqueeze(-1)), dim=-1)
+ xyv = xyv.sigmoid()
+ layer_res = xyv.reshape((bs, num_group, self.num_body_points, 3)).flatten(2, 3)
+ layer_hw = layer_ref_sig_kpt[..., 2:].reshape(bs, num_group, self.num_body_points, 2).flatten(2, 3)
+ layer_res = keypoint_xyzxyz_to_xyxyzz(layer_res)
+ outputs_keypoints_list.append(layer_res)
+ outputs_keypoints_hw.append(layer_hw)
+
+
+ if self.dn_number > 0 and dn_meta is not None:
+ outputs_class, outputs_coord_list = \
+ post_process(outputs_class, outputs_coord_list,
+ dn_meta, self.aux_loss, self._set_aux_loss)
+ out = {'pred_logits': outputs_class[-1], 'pred_boxes': outputs_coord_list[-1],
+ 'pred_keypoints': outputs_keypoints_list[-1]}
+
+ return out
+
+
+@MODULE_BUILD_FUNCS.registe_with_name(module_name='UniPose')
+def build_unipose(args):
+
+ num_classes = args.num_classes
+ device = torch.device(args.device)
+
+ backbone = build_backbone(args)
+
+ transformer = build_deformable_transformer(args)
+
+ try:
+ match_unstable_error = args.match_unstable_error
+ dn_labelbook_size = args.dn_labelbook_size
+ except:
+ match_unstable_error = True
+ dn_labelbook_size = num_classes
+
+ try:
+ dec_pred_class_embed_share = args.dec_pred_class_embed_share
+ except:
+ dec_pred_class_embed_share = True
+ try:
+ dec_pred_bbox_embed_share = args.dec_pred_bbox_embed_share
+ except:
+ dec_pred_bbox_embed_share = True
+
+ binary_query_selection = False
+ try:
+ binary_query_selection = args.binary_query_selection
+ except:
+ binary_query_selection = False
+
+ use_cdn = True
+ try:
+ use_cdn = args.use_cdn
+ except:
+ use_cdn = True
+
+ sub_sentence_present = True
+ try:
+ sub_sentence_present = args.sub_sentence_present
+ except:
+ sub_sentence_present = True
+ # print('********* sub_sentence_present', sub_sentence_present)
+
+ model = UniPose(
+ backbone,
+ transformer,
+ num_classes=num_classes,
+ num_queries=args.num_queries,
+ aux_loss=True,
+ iter_update=True,
+ query_dim=4,
+ random_refpoints_xy=args.random_refpoints_xy,
+ fix_refpoints_hw=args.fix_refpoints_hw,
+ num_feature_levels=args.num_feature_levels,
+ nheads=args.nheads,
+ dec_pred_class_embed_share=dec_pred_class_embed_share,
+ dec_pred_bbox_embed_share=dec_pred_bbox_embed_share,
+ # two stage
+ two_stage_type=args.two_stage_type,
+ # box_share
+ two_stage_bbox_embed_share=args.two_stage_bbox_embed_share,
+ two_stage_class_embed_share=args.two_stage_class_embed_share,
+ decoder_sa_type=args.decoder_sa_type,
+ num_patterns=args.num_patterns,
+ dn_number=args.dn_number if args.use_dn else 0,
+ dn_box_noise_scale=args.dn_box_noise_scale,
+ dn_label_noise_ratio=args.dn_label_noise_ratio,
+ dn_labelbook_size=dn_labelbook_size,
+ use_label_enc=args.use_label_enc,
+
+ text_encoder_type=args.text_encoder_type,
+
+ binary_query_selection=binary_query_selection,
+ use_cdn=use_cdn,
+ sub_sentence_present=sub_sentence_present
+ )
+
+ return model
+
+
+class ContrastiveAssign(nn.Module):
+ def __init__(self, project=False, cal_bias=None, max_text_len=256):
+ """
+ :param x: query
+ :param y: text embed
+ :param proj:
+ :return:
+ """
+ super().__init__()
+ self.project = project
+ self.cal_bias = cal_bias
+ self.max_text_len = max_text_len
+
+ def forward(self, x, text_dict):
+ """_summary_
+
+ Args:
+ x (_type_): _description_
+ text_dict (_type_): _description_
+ {
+ 'encoded_text': encoded_text, # bs, 195, d_model
+ 'text_token_mask': text_token_mask, # bs, 195
+ # True for used tokens. False for padding tokens
+ }
+ Returns:
+ _type_: _description_
+ """
+ assert isinstance(text_dict, dict)
+
+ y = text_dict['encoded_text']
+
+
+ max_text_len = y.shape[1]
+
+
+
+ text_token_mask = text_dict['text_token_mask']
+
+ if self.cal_bias is not None:
+ raise NotImplementedError
+ return x @ y.transpose(-1, -2) + self.cal_bias.weight.repeat(x.shape[0], x.shape[1], 1)
+ res = x @ y.transpose(-1, -2)
+ res.masked_fill_(~text_token_mask[:, None, :], float('-inf'))
+
+ # padding to max_text_len
+ new_res = torch.full((*res.shape[:-1], max_text_len), float('-inf'), device=res.device)
+ new_res[..., :res.shape[-1]] = res
+
+ return new_res
diff --git a/src/utils/dependencies/XPose/models/UniPose/utils.py b/src/utils/dependencies/XPose/models/UniPose/utils.py
new file mode 100644
index 0000000..350d831
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/UniPose/utils.py
@@ -0,0 +1,348 @@
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+
+import copy
+import torch
+import random
+from torch import nn, Tensor
+import os
+import numpy as np
+import math
+import torch.nn.functional as F
+from torch import nn
+
+
+def _get_clones(module, N, layer_share=False):
+ # import ipdb; ipdb.set_trace()
+ if layer_share:
+ return nn.ModuleList([module for i in range(N)])
+ else:
+ return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
+
+
+def get_sine_pos_embed(
+ pos_tensor: torch.Tensor,
+ num_pos_feats: int = 128,
+ temperature: int = 10000,
+ exchange_xy: bool = True,
+):
+ """generate sine position embedding from a position tensor
+ Args:
+ pos_tensor (torch.Tensor): shape: [..., n].
+ num_pos_feats (int): projected shape for each float in the tensor.
+ temperature (int): temperature in the sine/cosine function.
+ exchange_xy (bool, optional): exchange pos x and pos y. \
+ For example, input tensor is [x,y], the results will be [pos(y), pos(x)]. Defaults to True.
+ Returns:
+ pos_embed (torch.Tensor): shape: [..., n*num_pos_feats].
+ """
+ scale = 2 * math.pi
+ dim_t = torch.arange(num_pos_feats, dtype=torch.float32, device=pos_tensor.device)
+ dim_t = temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / num_pos_feats)
+
+ def sine_func(x: torch.Tensor):
+ sin_x = x * scale / dim_t
+ sin_x = torch.stack((sin_x[..., 0::2].sin(), sin_x[..., 1::2].cos()), dim=3).flatten(2)
+ return sin_x
+
+ pos_res = [sine_func(x) for x in pos_tensor.split([1] * pos_tensor.shape[-1], dim=-1)]
+ if exchange_xy:
+ pos_res[0], pos_res[1] = pos_res[1], pos_res[0]
+ pos_res = torch.cat(pos_res, dim=-1)
+ return pos_res
+
+
+def gen_encoder_output_proposals(memory: Tensor, memory_padding_mask: Tensor, spatial_shapes: Tensor, learnedwh=None):
+ """
+ Input:
+ - memory: bs, \sum{hw}, d_model
+ - memory_padding_mask: bs, \sum{hw}
+ - spatial_shapes: nlevel, 2
+ - learnedwh: 2
+ Output:
+ - output_memory: bs, \sum{hw}, d_model
+ - output_proposals: bs, \sum{hw}, 4
+ """
+ N_, S_, C_ = memory.shape
+ base_scale = 4.0
+ proposals = []
+ _cur = 0
+ for lvl, (H_, W_) in enumerate(spatial_shapes):
+ mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H_ * W_)].view(N_, H_, W_, 1)
+ valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1)
+ valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1)
+
+ # import ipdb; ipdb.set_trace()
+
+ grid_y, grid_x = torch.meshgrid(torch.linspace(0, H_ - 1, H_, dtype=torch.float32, device=memory.device),
+ torch.linspace(0, W_ - 1, W_, dtype=torch.float32, device=memory.device))
+ grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) # H_, W_, 2
+
+ scale = torch.cat([valid_W.unsqueeze(-1), valid_H.unsqueeze(-1)], 1).view(N_, 1, 1, 2)
+ grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
+
+ if learnedwh is not None:
+ # import ipdb; ipdb.set_trace()
+ wh = torch.ones_like(grid) * learnedwh.sigmoid() * (2.0 ** lvl)
+ else:
+ wh = torch.ones_like(grid) * 0.05 * (2.0 ** lvl)
+
+ # scale = torch.cat([W_[None].unsqueeze(-1), H_[None].unsqueeze(-1)], 1).view(1, 1, 1, 2).repeat(N_, 1, 1, 1)
+ # grid = (grid.unsqueeze(0).expand(N_, -1, -1, -1) + 0.5) / scale
+ # wh = torch.ones_like(grid) / scale
+ proposal = torch.cat((grid, wh), -1).view(N_, -1, 4)
+ proposals.append(proposal)
+ _cur += (H_ * W_)
+ # import ipdb; ipdb.set_trace()
+ output_proposals = torch.cat(proposals, 1)
+ output_proposals_valid = ((output_proposals > 0.01) & (output_proposals < 0.99)).all(-1, keepdim=True)
+ output_proposals = torch.log(output_proposals / (1 - output_proposals)) # unsigmoid
+ output_proposals = output_proposals.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
+ output_proposals = output_proposals.masked_fill(~output_proposals_valid, float('inf'))
+
+ output_memory = memory
+ output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float(0))
+ output_memory = output_memory.masked_fill(~output_proposals_valid, float(0))
+
+ # output_memory = output_memory.masked_fill(memory_padding_mask.unsqueeze(-1), float('inf'))
+ # output_memory = output_memory.masked_fill(~output_proposals_valid, float('inf'))
+
+ return output_memory, output_proposals
+
+
+class RandomBoxPerturber():
+ def __init__(self, x_noise_scale=0.2, y_noise_scale=0.2, w_noise_scale=0.2, h_noise_scale=0.2) -> None:
+ self.noise_scale = torch.Tensor([x_noise_scale, y_noise_scale, w_noise_scale, h_noise_scale])
+
+ def __call__(self, refanchors: Tensor) -> Tensor:
+ nq, bs, query_dim = refanchors.shape
+ device = refanchors.device
+
+ noise_raw = torch.rand_like(refanchors)
+ noise_scale = self.noise_scale.to(device)[:query_dim]
+
+ new_refanchors = refanchors * (1 + (noise_raw - 0.5) * noise_scale)
+ return new_refanchors.clamp_(0, 1)
+
+
+def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2, no_reduction=False):
+ """
+ Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.
+ Args:
+ inputs: A float tensor of arbitrary shape.
+ The predictions for each example.
+ targets: A float tensor with the same shape as inputs. Stores the binary
+ classification label for each element in inputs
+ (0 for the negative class and 1 for the positive class).
+ alpha: (optional) Weighting factor in range (0,1) to balance
+ positive vs negative examples. Default = -1 (no weighting).
+ gamma: Exponent of the modulating factor (1 - p_t) to
+ balance easy vs hard examples.
+ Returns:
+ Loss tensor
+ """
+ prob = inputs.sigmoid()
+ ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction="none")
+ p_t = prob * targets + (1 - prob) * (1 - targets)
+ loss = ce_loss * ((1 - p_t) ** gamma)
+
+ if alpha >= 0:
+ alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
+ loss = alpha_t * loss
+
+ if no_reduction:
+ return loss
+
+ return loss.mean(1).sum() / num_boxes
+
+
+class MLP(nn.Module):
+ """ Very simple multi-layer perceptron (also called FFN)"""
+
+ def __init__(self, input_dim, hidden_dim, output_dim, num_layers):
+ super().__init__()
+ self.num_layers = num_layers
+ h = [hidden_dim] * (num_layers - 1)
+ self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim]))
+
+ def forward(self, x):
+ for i, layer in enumerate(self.layers):
+ x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x)
+ return x
+
+
+def _get_activation_fn(activation, d_model=256, batch_dim=0):
+ """Return an activation function given a string"""
+ if activation == "relu":
+ return F.relu
+ if activation == "gelu":
+ return F.gelu
+ if activation == "glu":
+ return F.glu
+ if activation == "prelu":
+ return nn.PReLU()
+ if activation == "selu":
+ return F.selu
+
+ raise RuntimeError(F"activation should be relu/gelu, not {activation}.")
+
+
+def gen_sineembed_for_position(pos_tensor):
+ # n_query, bs, _ = pos_tensor.size()
+ # sineembed_tensor = torch.zeros(n_query, bs, 256)
+ scale = 2 * math.pi
+ dim_t = torch.arange(128, dtype=torch.float32, device=pos_tensor.device)
+ dim_t = 10000 ** (2 * (dim_t // 2) / 128)
+ x_embed = pos_tensor[:, :, 0] * scale
+ y_embed = pos_tensor[:, :, 1] * scale
+ pos_x = x_embed[:, :, None] / dim_t
+ pos_y = y_embed[:, :, None] / dim_t
+ pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2)
+ pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2)
+ if pos_tensor.size(-1) == 2:
+ pos = torch.cat((pos_y, pos_x), dim=2)
+ elif pos_tensor.size(-1) == 4:
+ w_embed = pos_tensor[:, :, 2] * scale
+ pos_w = w_embed[:, :, None] / dim_t
+ pos_w = torch.stack((pos_w[:, :, 0::2].sin(), pos_w[:, :, 1::2].cos()), dim=3).flatten(2)
+
+ h_embed = pos_tensor[:, :, 3] * scale
+ pos_h = h_embed[:, :, None] / dim_t
+ pos_h = torch.stack((pos_h[:, :, 0::2].sin(), pos_h[:, :, 1::2].cos()), dim=3).flatten(2)
+
+ pos = torch.cat((pos_y, pos_x, pos_w, pos_h), dim=2)
+ else:
+ raise ValueError("Unknown pos_tensor shape(-1):{}".format(pos_tensor.size(-1)))
+ return pos
+
+
+def oks_overlaps(kpt_preds, kpt_gts, kpt_valids, kpt_areas, sigmas):
+ sigmas = kpt_preds.new_tensor(sigmas)
+ variances = (sigmas * 2) ** 2
+
+ assert kpt_preds.size(0) == kpt_gts.size(0)
+ kpt_preds = kpt_preds.reshape(-1, kpt_preds.size(-1) // 2, 2)
+ kpt_gts = kpt_gts.reshape(-1, kpt_gts.size(-1) // 2, 2)
+
+ squared_distance = (kpt_preds[:, :, 0] - kpt_gts[:, :, 0]) ** 2 + \
+ (kpt_preds[:, :, 1] - kpt_gts[:, :, 1]) ** 2
+ # import pdb
+ # pdb.set_trace()
+ # assert (kpt_valids.sum(-1) > 0).all()
+ squared_distance0 = squared_distance / (kpt_areas[:, None] * variances[None, :] * 2)
+ squared_distance1 = torch.exp(-squared_distance0)
+ squared_distance1 = squared_distance1 * kpt_valids
+ oks = squared_distance1.sum(dim=1) / (kpt_valids.sum(dim=1) + 1e-6)
+
+ return oks
+
+
+def oks_loss(pred,
+ target,
+ valid=None,
+ area=None,
+ linear=False,
+ sigmas=None,
+ eps=1e-6):
+ """Oks loss.
+ Computing the oks loss between a set of predicted poses and target poses.
+ The loss is calculated as negative log of oks.
+ Args:
+ pred (torch.Tensor): Predicted poses of format (x1, y1, x2, y2, ...),
+ shape (n, 2K).
+ target (torch.Tensor): Corresponding gt poses, shape (n, 2K).
+ linear (bool, optional): If True, use linear scale of loss instead of
+ log scale. Default: False.
+ eps (float): Eps to avoid log(0).
+ Return:
+ torch.Tensor: Loss tensor.
+ """
+ oks = oks_overlaps(pred, target, valid, area, sigmas).clamp(min=eps)
+ if linear:
+ loss = 1 - oks
+ else:
+ loss = -oks.log()
+ return loss
+
+
+class OKSLoss(nn.Module):
+ """IoULoss.
+ Computing the oks loss between a set of predicted poses and target poses.
+ Args:
+ linear (bool): If True, use linear scale of loss instead of log scale.
+ Default: False.
+ eps (float): Eps to avoid log(0).
+ reduction (str): Options are "none", "mean" and "sum".
+ loss_weight (float): Weight of loss.
+ """
+
+ def __init__(self,
+ linear=False,
+ num_keypoints=17,
+ eps=1e-6,
+ reduction='mean',
+ loss_weight=1.0):
+ super(OKSLoss, self).__init__()
+ self.linear = linear
+ self.eps = eps
+ self.reduction = reduction
+ self.loss_weight = loss_weight
+ if num_keypoints == 68:
+ self.sigmas = np.array([
+ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07,
+ 1.07, .87, .87, .89, .89, .25, .25, .25, .25, .25, .25, .25, .25,
+ .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25,
+ .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25,
+ .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25, .25,
+ ], dtype=np.float32) / 10.0
+ else:
+ raise ValueError(f'Unsupported keypoints number {num_keypoints}')
+
+ def forward(self,
+ pred,
+ target,
+ valid,
+ area,
+ weight=None,
+ avg_factor=None,
+ reduction_override=None):
+ """Forward function.
+ Args:
+ pred (torch.Tensor): The prediction.
+ target (torch.Tensor): The learning target of the prediction.
+ valid (torch.Tensor): The visible flag of the target pose.
+ area (torch.Tensor): The area of the target pose.
+ weight (torch.Tensor, optional): The weight of loss for each
+ prediction. Defaults to None.
+ avg_factor (int, optional): Average factor that is used to average
+ the loss. Defaults to None.
+ reduction_override (str, optional): The reduction method used to
+ override the original reduction method of the loss.
+ Defaults to None. Options are "none", "mean" and "sum".
+ """
+ assert reduction_override in (None, 'none', 'mean', 'sum')
+ reduction = (
+ reduction_override if reduction_override else self.reduction)
+ if (weight is not None) and (not torch.any(weight > 0)) and (
+ reduction != 'none'):
+ if pred.dim() == weight.dim() + 1:
+ weight = weight.unsqueeze(1)
+ return (pred * weight).sum() # 0
+ if weight is not None and weight.dim() > 1:
+ # TODO: remove this in the future
+ # reduce the weight of shape (n, 4) to (n,) to match the
+ # iou_loss of shape (n,)
+ assert weight.shape == pred.shape
+ weight = weight.mean(-1)
+ loss = self.loss_weight * oks_loss(
+ pred,
+ target,
+ valid=valid,
+ area=area,
+ linear=self.linear,
+ sigmas=self.sigmas,
+ eps=self.eps)
+ return loss
diff --git a/src/utils/dependencies/XPose/models/__init__.py b/src/utils/dependencies/XPose/models/__init__.py
new file mode 100644
index 0000000..ab6c39b
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/__init__.py
@@ -0,0 +1,16 @@
+# ------------------------------------------------------------------------
+# ED-Pose
+# Copyright (c) 2023 IDEA. All Rights Reserved.
+# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
+# ------------------------------------------------------------------------
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+from .UniPose.unipose import build_unipose
+
+def build_model(args):
+ # we use register to maintain models from catdet6 on.
+ from .registry import MODULE_BUILD_FUNCS
+
+ assert args.modelname in MODULE_BUILD_FUNCS._module_dict
+ build_func = MODULE_BUILD_FUNCS.get(args.modelname)
+ model = build_func(args)
+ return model
diff --git a/src/utils/dependencies/XPose/models/registry.py b/src/utils/dependencies/XPose/models/registry.py
new file mode 100644
index 0000000..f438c6e
--- /dev/null
+++ b/src/utils/dependencies/XPose/models/registry.py
@@ -0,0 +1,58 @@
+# -*- coding: utf-8 -*-
+# @Author: Yihao Chen
+# @Date: 2021-08-16 16:03:17
+# @Last Modified by: Shilong Liu
+# @Last Modified time: 2022-01-23 15:26
+# modified from mmcv
+
+import inspect
+from functools import partial
+
+
+class Registry(object):
+
+ def __init__(self, name):
+ self._name = name
+ self._module_dict = dict()
+
+ def __repr__(self):
+ format_str = self.__class__.__name__ + '(name={}, items={})'.format(
+ self._name, list(self._module_dict.keys()))
+ return format_str
+
+ def __len__(self):
+ return len(self._module_dict)
+
+ @property
+ def name(self):
+ return self._name
+
+ @property
+ def module_dict(self):
+ return self._module_dict
+
+ def get(self, key):
+ return self._module_dict.get(key, None)
+
+ def registe_with_name(self, module_name=None, force=False):
+ return partial(self.register, module_name=module_name, force=force)
+
+ def register(self, module_build_function, module_name=None, force=False):
+ """Register a module build function.
+ Args:
+ module (:obj:`nn.Module`): Module to be registered.
+ """
+ if not inspect.isfunction(module_build_function):
+ raise TypeError('module_build_function must be a function, but got {}'.format(
+ type(module_build_function)))
+ if module_name is None:
+ module_name = module_build_function.__name__
+ if not force and module_name in self._module_dict:
+ raise KeyError('{} is already registered in {}'.format(
+ module_name, self.name))
+ self._module_dict[module_name] = module_build_function
+
+ return module_build_function
+
+MODULE_BUILD_FUNCS = Registry('model build functions')
+
diff --git a/src/utils/dependencies/XPose/predefined_keypoints.py b/src/utils/dependencies/XPose/predefined_keypoints.py
new file mode 100644
index 0000000..c32c5ad
--- /dev/null
+++ b/src/utils/dependencies/XPose/predefined_keypoints.py
@@ -0,0 +1,56 @@
+person = {"keypoints":['nose', 'left eye', 'right eye', 'left ear', 'right ear', 'left shoulder', 'right shoulder', 'left elbow', 'right elbow', 'left wrist', 'right wrist', 'left hip', 'right hip', 'left knee', 'right knee', 'left ankle', 'right ankle'],"skeleton": [[16,14],[14,12],[17,15],[15,13],[12,13],[6,12],[7,13],[6,7],[6,8],[7,9],[8,10],[9,11],[2,3],[1,2],[1,3],[2,4],[3,5],[4,6],[5,7]]}
+
+face = {"keypoints": ['right cheekbone 1', 'right cheekbone 2', 'right cheek 1', 'right cheek 2', 'right cheek 3', 'right cheek 4', 'right cheek 5', 'right chin', 'chin center', 'left chin', 'left cheek 5', 'left cheek 4', 'left cheek 3', 'left cheek 2', 'left cheek 1', 'left cheekbone 2', 'left cheekbone 1', 'right eyebrow 1', 'right eyebrow 2', 'right eyebrow 3', 'right eyebrow 4', 'right eyebrow 5', 'left eyebrow 1', 'left eyebrow 2', 'left eyebrow 3', 'left eyebrow 4', 'left eyebrow 5', 'nasal bridge 1', 'nasal bridge 2', 'nasal bridge 3', 'nasal bridge 4', 'right nasal wing 1', 'right nasal wing 2', 'nasal wing center', 'left nasal wing 1', 'left nasal wing 2', 'right eye eye corner 1', 'right eye upper eyelid 1', 'right eye upper eyelid 2', 'right eye eye corner 2', 'right eye lower eyelid 2', 'right eye lower eyelid 1', 'left eye eye corner 1', 'left eye upper eyelid 1', 'left eye upper eyelid 2', 'left eye eye corner 2', 'left eye lower eyelid 2', 'left eye lower eyelid 1', 'right mouth corner', 'upper lip outer edge 1', 'upper lip outer edge 2', 'upper lip outer edge 3', 'upper lip outer edge 4', 'upper lip outer edge 5', 'left mouth corner', 'lower lip outer edge 5', 'lower lip outer edge 4', 'lower lip outer edge 3', 'lower lip outer edge 2', 'lower lip outer edge 1', 'upper lip inter edge 1', 'upper lip inter edge 2', 'upper lip inter edge 3', 'upper lip inter edge 4', 'upper lip inter edge 5', 'lower lip inter edge 3', 'lower lip inter edge 2', 'lower lip inter edge 1'], "skeleton": []}
+
+hand = {"keypoints":['wrist', 'thumb root', "thumb's third knuckle", "thumb's second knuckle", 'thumbโs first knuckle', "forefinger's root", "forefinger's third knuckle", "forefinger's second knuckle", "forefinger's first knuckle", "middle finger's root", "middle finger's third knuckle", "middle finger's second knuckle", "middle finger's first knuckle", "ring finger's root", "ring finger's third knuckle", "ring finger's second knuckle", "ring finger's first knuckle", "pinky finger's root", "pinky finger's third knuckle", "pinky finger's second knuckle", "pinky finger's first knuckle"],"skeleton": []}
+
+animal_in_AnimalKindom = {"keypoints":['head mid top', 'eye left', 'eye right', 'mouth front top', 'mouth back left', 'mouth back right', 'mouth front bottom', 'shoulder left', 'shoulder right', 'elbow left', 'elbow right', 'wrist left', 'wrist right', 'torso mid back', 'hip left', 'hip right', 'knee left', 'knee right', 'ankle left ', 'ankle right', 'tail top back', 'tail mid back', 'tail end back'],"skeleton": [[1, 0], [2, 0], [3, 4], [3, 5], [4, 6], [5, 6], [0, 7], [0, 8], [7, 9], [8, 10], [9, 11], [10, 12], [0, 13], [13, 20], [20, 14], [20, 15], [14, 16], [15, 17], [16, 18], [17, 19], [20, 21], [21, 22]]}
+
+animal_in_AP10K = {"keypoints": ['left eye', 'right eye', 'nose', 'neck', 'root of tail', 'left shoulder', 'left elbow', 'left front paw', 'right shoulder', 'right elbow', 'right front paw', 'left hip', 'left knee', 'left back paw', 'right hip', 'right knee', 'right back paw'], "skeleton": [[1, 2], [1, 3], [2, 3], [3, 4], [4, 5], [4, 6], [6, 7], [7, 8], [4, 9], [9, 10], [10, 11], [5, 12], [12, 13], [13, 14], [5, 15], [15, 16], [16, 17]]}
+
+animal= {"keypoints": ['left eye', 'right eye', 'nose', 'neck', 'root of tail', 'left shoulder', 'left elbow', 'left front paw', 'right shoulder', 'right elbow', 'right front paw', 'left hip', 'left knee', 'left back paw', 'right hip', 'right knee', 'right back paw'], "skeleton": [[1, 2], [1, 3], [2, 3], [3, 4], [4, 5], [4, 6], [6, 7], [7, 8], [4, 9], [9, 10], [10, 11], [5, 12], [12, 13], [13, 14], [5, 15], [15, 16], [16, 17]]}
+
+animal_face = {"keypoints": ['right eye right', 'right eye left', 'left eye right', 'left eye left', 'nose tip', 'lip right', 'lip left', 'upper lip', 'lower lip'], "skeleton": []}
+
+fly = {"keypoints": ['head', 'eye left', 'eye right', 'neck', 'thorax', 'abdomen', 'foreleg right base', 'foreleg right first segment', 'foreleg right second segment', 'foreleg right tip', 'midleg right base', 'midleg right first segment', 'midleg right second segment', 'midleg right tip', 'hindleg right base', 'hindleg right first segment', 'hindleg right second segment', 'hindleg right tip', 'foreleg left base', 'foreleg left first segment', 'foreleg left second segment', 'foreleg left tip', 'midleg left base', 'midleg left first segment', 'midleg left second segment', 'midleg left tip', 'hindleg left base', 'hindleg left first segment', 'hindleg left second segment', 'hindleg left tip', 'wing left', 'wing right'], "skeleton": [[2, 1], [3, 1], [4, 1], [5, 4], [6, 5], [8, 7], [9, 8], [10, 9], [12, 11], [13, 12], [14, 13], [16, 15], [17, 16], [18, 17], [20, 19], [21, 20], [22, 21], [24, 23], [25, 24], [26, 25], [28, 27], [29, 28], [30, 29], [31, 4], [32, 4]]}
+
+locust = {"keypoints": ['head', 'neck', 'thorax', 'abdomen1', 'abdomen2', 'anttip left', 'antbase left', 'eye left', 'foreleg left base', 'foreleg left first segment', 'foreleg left second segment', 'foreleg left tip', 'midleg left base', 'midleg left first segment', 'midleg left second segment', 'midleg left tip', 'hindleg left base', 'hindleg left first segment', 'hindleg left second segment', 'hindleg left tip', 'anttip right', 'antbase right', 'eye right', 'foreleg right base', 'foreleg right first segment', 'foreleg right second segment', 'foreleg right tip', 'midleg right base', 'midleg right first segment', 'midleg right second segment', 'midleg right tip', 'hindleg right base', 'hindleg right first segment', 'hindleg right second segment', 'hindleg right tip'],"skeleton": [[2, 1], [3, 2], [4, 3], [5, 4], [7, 6], [8, 7], [10, 9], [11, 10], [12, 11], [14, 13], [15, 14],[16, 15], [18, 17], [19, 18], [20, 19], [22, 21], [23, 22], [25, 24], [26, 25], [27, 26],[29, 28], [30, 29], [31, 30], [33, 32], [34, 33], [35, 34]]}
+
+car ={"keypoints": ['right front wheel center', 'left front wheel center', 'right rear wheel center', 'left rear wheel center', 'front right', 'front left', 'back right', 'back left', 'none', 'roof front right', 'roof front left', 'roof back right', 'roof back left', 'none'],"skeleton": [[0, 2], [1, 3], [0, 1], [2, 3], [9, 11], [10, 12], [9, 10], [11, 12], [4, 0], [4, 9], [4, 5], [5, 1], [5, 10], [6, 2], [6, 11], [7, 3], [7, 12], [6, 7]]}
+
+short_sleeved_shirt = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right cuff outside', 'right cuff inside', 'right sleeve inside 2', 'right sleeve inside 1', 'right side 1', 'right side 2', 'right side 3', 'center hem', 'left side 3', 'left side 2', 'left side 1', 'left sleeve inside 1', 'left sleeve inside 2', 'left cuff inside', 'left cuff outside', 'left sleeve outside 2', 'left sleeve outside 1'], 'skeleton': []}
+
+long_sleeved_outwear={'keypoints': ['upper center neckline', 'lower right center neckline', 'lower right neckline', 'upper right neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right sleeve outside 3', 'right sleeve outside 4', 'right cuff outside', 'right cuff inside', 'right sleeve inside 1', 'right sleeve inside 2', 'right sleeve inside 3', 'right sleeve inside 4', 'right side outside 1', 'right side outside 2', 'right side outside 3', 'right side inside 3', 'left side outside 3', 'left side outside 2', 'left side outside 1', 'left sleeve inside 4', 'left sleeve inside 3', 'left sleeve inside 2', 'left sleeve inside 1', 'left cuff inside', 'left cuff outside', 'left sleeve outside 4', 'left sleeve outside 3', 'left sleeve outside 2', 'left sleeve outside 1', 'lower left center neckline', 'left side inside 1', 'left side inside 2', 'left side inside 3', 'right side inside 1', 'right side inside 2'], 'skeleton': []}
+
+short_sleeved_outwear={'keypoints': ['upper center neckline', 'lower right center neckline', 'lower right neckline', 'upper right neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right cuff outside', 'right cuff inside', 'right sleeve inside 2', 'right sleeve inside 1', 'right side outside 1', 'right side outside 2', 'right side outside 3', 'right side inside 3', 'left side outside 3', 'left side outside 2', 'left side outside 1', 'left sleeve inside 1', 'left sleeve inside 2', 'left cuff inside', 'left cuff outside', 'left sleeve outside 2', 'left sleeve outside 1', 'lower left center neckline', 'left side inside 1', 'left side inside 2', 'left side inside 3', 'right side inside 1', 'right side inside 2'], 'skeleton': []}
+
+sling={'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve', 'right side 1', 'right side 2', 'right side 3', 'center hem', 'left side 3', 'left side 2', 'left side 1', 'left sleeve'], 'skeleton': []}
+
+vest = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve', 'right side 1', 'right side 2', 'right side 3', 'center hem', 'left side 3', 'left side 2', 'left side 1', 'left sleeve'], 'skeleton': []}
+
+long_sleeved_dress={'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right sleeve outside 3', 'right sleeve outside 4', 'right cuff outside', 'right cuff inside', 'right sleeve inside 4', 'right sleeve inside 3', 'right sleeve inside 2', 'right sleeve inside 1', 'right side 1', 'right side 2', 'right side 3', 'right side 4', 'right side 5', 'center hem', 'left side 5', 'left side 4', 'left side 3', 'left side 2', 'left side 1', 'left sleeve inside 1', 'left sleeve inside 2', 'left sleeve inside 3', 'left sleeve inside 4', 'left cuff inside', 'left cuff outside', 'left sleeve outside 4', 'left sleeve outside 3', 'left sleeve outside 2', 'left sleeve outside 1'], 'skeleton': []}
+
+long_sleeved_shirt = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right sleeve outside 3', 'right sleeve outside 4', 'right cuff outside', 'right cuff inside', 'right sleeve inside 4', 'right sleeve inside 3', 'right sleeve inside 2', 'right sleeve inside 1', 'right side 1', 'right side 2', 'right side 3', 'center hem', 'left side 3', 'left side 2', 'left side 1', 'left sleeve inside 1', 'left sleeve inside 2', 'left sleeve inside 3', 'left sleeve inside 4', 'left cuff inside', 'left cuff outside', 'left sleeve outside 4', 'left sleeve outside 3', 'left sleeve outside 2', 'left sleeve outside 1'], 'skeleton': []}
+
+trousers = {'keypoints': ['right side outside 1', 'upper center', 'left side outside 1', 'right side outside 2', 'right side outside 3', 'right cuff outside', 'right cuff inside', 'right side inside 1', 'crotch', 'left side inside 1', 'left cuff inside', 'left cuff outside', 'left side outside 3', 'left side outside 2'], 'skeleton': []}
+
+sling_dress = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right side 1', 'right side 2', 'right side 3', 'right side 4', 'right side 5', 'right side 6', 'center hem', 'left side 6', 'left side 5', 'left side 4', 'left side 3', 'left side 2', 'left side 1'], 'skeleton': []}
+
+vest_dress = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right side 1', 'right side 2', 'right side 3', 'right side 4', 'right side 5', 'right side 6', 'center hem', 'left side 6', 'left side 5', 'left side 4', 'left side 3', 'left side 2', 'left side 1'], 'skeleton': []}
+
+skirt = {'keypoints': ['right side 1', 'upper center', 'left side 1', 'right side 2', 'right side 3', 'center hem', 'left side 3', 'left side 2'], 'skeleton': []}
+
+short_sleeved_dress = {'keypoints': ['upper center neckline', 'upper right neckline', 'lower right neckline', 'lower center neckline', 'lower left neckline', 'upper left neckline', 'right sleeve outside 1', 'right sleeve outside 2', 'right cuff outside', 'right cuff inside', 'right sleeve inside 1', 'right sleeve inside 2', 'left side 1', 'left side 2', 'left side 3', 'left side 4', 'left side 5', 'center hem', 'right side 5', 'right side 4', 'right side 3', 'right side 2', 'right side 1', 'left sleeve inside 2', 'left sleeve inside 1', 'left cuff inside', 'left cuff outside', 'left sleeve outside 2', 'left sleeve outside 1'], 'skeleton': []}
+
+shorts = {'keypoints': ['right side outside 1', 'upper center', 'left side outside 1', 'right side outside 2', 'right cuff outside', 'right cuff inside', 'crotch', 'left cuff inside', 'left cuff outside', 'left side outside 2'], 'skeleton': []}
+
+table = {'keypoints': ['desktop corner 1', 'desktop corner 2', 'desktop corner 3', 'desktop corner 4', 'table leg 1', 'table leg 2', 'table leg 3', 'table leg 4'], 'skeleton': []}
+
+chair = {'keypoints': ['legs righttopcorner', 'legs lefttopcorner', 'legs leftbottomcorner', 'legs rightbottomcorner', 'base righttop', 'base lefttop', 'base leftbottom', 'base rightbottom', 'headboard righttop', 'headboard lefttop'], 'skeleton': []}
+
+bed = {'keypoints': ['legs rightbottomcorner', 'legs righttopcorner', 'base rightbottom', 'base righttop', 'backrest righttop', 'legs leftbottomcorner', 'legs lefttopcorner', 'base leftbottom', 'base lefttop', 'backrest lefttop'], 'skeleton': []}
+
+sofa = {'keypoints': ['legs rightbottomcorner', 'legs righttopcorner', 'base rightbottom', 'base righttop', 'armrests rightbottomcorner', 'armrests righttopcorner', 'backrest righttop', 'legs leftbottomcorner', 'legs lefttopcorner', 'base leftbottom', 'base lefttop', 'armrests leftbottomcorner', 'armrests lefttopcorner', 'backrest lefttop'], 'skeleton': []}
+
+swivelchair = {'keypoints': ['rotatingbase 1', 'rotatingbase 2', 'rotatingbase 3', 'rotatingbase 4', 'rotatingbase 5', 'rotatingbase center', 'base center', 'base righttop', 'base lefttop', 'base leftbottom', 'base rightbottom', 'backrest righttop', 'backrest lefttop'], 'skeleton': []}
+
diff --git a/src/utils/dependencies/XPose/transforms.py b/src/utils/dependencies/XPose/transforms.py
new file mode 100644
index 0000000..9155913
--- /dev/null
+++ b/src/utils/dependencies/XPose/transforms.py
@@ -0,0 +1,394 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Transforms and data augmentation for both image + bbox.
+"""
+import os
+import sys
+import random
+
+import PIL
+import torch
+import torchvision.transforms as T
+import torchvision.transforms.functional as F
+
+sys.path.append(os.path.dirname(os.path.abspath(__file__)))
+from util.box_ops import box_xyxy_to_cxcywh
+from util.misc import interpolate
+
+
+def crop(image, target, region):
+ cropped_image = F.crop(image, *region)
+
+ if target is not None:
+ target = target.copy()
+ i, j, h, w = region
+ id2catname = target["id2catname"]
+ caption_list = target["caption_list"]
+ target["size"] = torch.tensor([h, w])
+
+ fields = ["labels", "area", "iscrowd", "positive_map","keypoints"]
+
+ if "boxes" in target:
+ boxes = target["boxes"]
+ max_size = torch.as_tensor([w, h], dtype=torch.float32)
+ cropped_boxes = boxes - torch.as_tensor([j, i, j, i])
+ cropped_boxes = torch.min(cropped_boxes.reshape(-1, 2, 2), max_size)
+ cropped_boxes = cropped_boxes.clamp(min=0)
+ area = (cropped_boxes[:, 1, :] - cropped_boxes[:, 0, :]).prod(dim=1)
+ target["boxes"] = cropped_boxes.reshape(-1, 4)
+ target["area"] = area
+ fields.append("boxes")
+
+ if "masks" in target:
+ # FIXME should we update the area here if there are no boxes?
+ target['masks'] = target['masks'][:, i:i + h, j:j + w]
+ fields.append("masks")
+
+
+ # remove elements for which the boxes or masks that have zero area
+ if "boxes" in target or "masks" in target:
+ # favor boxes selection when defining which elements to keep
+ # this is compatible with previous implementation
+ if "boxes" in target:
+ cropped_boxes = target['boxes'].reshape(-1, 2, 2)
+ keep = torch.all(cropped_boxes[:, 1, :] > cropped_boxes[:, 0, :], dim=1)
+ else:
+ keep = target['masks'].flatten(1).any(1)
+
+ for field in fields:
+ if field in target:
+ target[field] = target[field][keep]
+
+ if os.environ.get('IPDB_SHILONG_DEBUG', None) == 'INFO':
+ # for debug and visualization only.
+ if 'strings_positive' in target:
+ target['strings_positive'] = [_i for _i, _j in zip(target['strings_positive'], keep) if _j]
+
+
+ if "keypoints" in target:
+ max_size = torch.as_tensor([w, h], dtype=torch.float32)
+ keypoints = target["keypoints"]
+ cropped_keypoints = keypoints.view(-1, 3)[:,:2] - torch.as_tensor([j, i])
+ cropped_keypoints = torch.min(cropped_keypoints, max_size)
+ cropped_keypoints = cropped_keypoints.clamp(min=0)
+ cropped_keypoints = torch.cat([cropped_keypoints, keypoints.view(-1, 3)[:,2].unsqueeze(1)], dim=1)
+ target["keypoints"] = cropped_keypoints.view(target["keypoints"].shape[0], target["keypoints"].shape[1], 3)
+
+ target["id2catname"] = id2catname
+ target["caption_list"] = caption_list
+
+ return cropped_image, target
+
+
+def hflip(image, target):
+ flipped_image = F.hflip(image)
+
+ w, h = image.size
+
+ if target is not None:
+ target = target.copy()
+ if "boxes" in target:
+ boxes = target["boxes"]
+ boxes = boxes[:, [2, 1, 0, 3]] * torch.as_tensor([-1, 1, -1, 1]) + torch.as_tensor([w, 0, w, 0])
+ target["boxes"] = boxes
+
+ if "masks" in target:
+ target['masks'] = target['masks'].flip(-1)
+
+
+ if "keypoints" in target:
+ dataset_name=target["dataset_name"]
+ if dataset_name == "coco_person" or dataset_name == "macaque":
+ flip_pairs = [[1, 2], [3, 4], [5, 6], [7, 8],
+ [9, 10], [11, 12], [13, 14], [15, 16]]
+
+ elif dataset_name=="animalkindom_ak_P1_animal":
+ flip_pairs = [[1, 2], [4, 5],[7,8],[9,10],[11,12],[14,15],[16,17],[18,19]]
+
+ elif dataset_name=="animalweb_animal":
+ flip_pairs = [[0, 3], [1, 2], [5, 6]]
+
+ elif dataset_name=="face":
+ flip_pairs = [
+ [0, 16], [1, 15], [2, 14], [3, 13], [4, 12], [5, 11], [6, 10], [7, 9],
+ [17, 26], [18, 25], [19, 24], [20, 23], [21, 22],
+ [31, 35], [32, 34],
+ [36, 45], [37, 44], [38, 43], [39, 42], [40, 47], [41, 46],
+ [48, 54], [49, 53], [50, 52],
+ [55, 59], [56, 58],
+ [60, 64], [61, 63],
+ [65, 67]
+ ]
+
+ elif dataset_name=="hand":
+ flip_pairs = []
+
+ elif dataset_name=="foot":
+ flip_pairs = []
+
+ elif dataset_name=="locust":
+ flip_pairs = [[5, 20], [6, 21], [7, 22], [8, 23], [9, 24], [10, 25], [11, 26], [12, 27], [13, 28], [14, 29], [15, 30], [16, 31], [17, 32], [18, 33], [19, 34]]
+
+ elif dataset_name=="fly":
+ flip_pairs = [[1, 2], [6, 18], [7, 19], [8, 20], [9, 21], [10, 22], [11, 23], [12, 24], [13, 25], [14, 26], [15, 27], [16, 28], [17, 29], [30, 31]]
+
+ elif dataset_name == "ap_36k_animal" or dataset_name == "ap_10k_animal":
+ flip_pairs = [[0, 1],[5, 8], [6, 9], [7, 10], [11, 14], [12, 15], [13, 16]]
+
+
+
+ keypoints = target["keypoints"]
+ keypoints[:,:,0] = w - keypoints[:,:, 0]-1
+ for pair in flip_pairs:
+ keypoints[:,pair[0], :], keypoints[:,pair[1], :] = keypoints[:,pair[1], :], keypoints[:,pair[0], :].clone()
+ target["keypoints"] = keypoints
+ return flipped_image, target
+
+
+def resize(image, target, size, max_size=None):
+ # size can be min_size (scalar) or (w, h) tuple
+
+ def get_size_with_aspect_ratio(image_size, size, max_size=None):
+ w, h = image_size
+ if max_size is not None:
+ min_original_size = float(min((w, h)))
+ max_original_size = float(max((w, h)))
+ if max_original_size / min_original_size * size > max_size:
+ size = int(round(max_size * min_original_size / max_original_size))
+
+ if (w <= h and w == size) or (h <= w and h == size):
+ return (h, w)
+
+ if w < h:
+ ow = size
+ oh = int(size * h / w)
+ else:
+ oh = size
+ ow = int(size * w / h)
+
+ return (oh, ow)
+
+ def get_size(image_size, size, max_size=None):
+ if isinstance(size, (list, tuple)):
+ return size[::-1]
+ else:
+ return get_size_with_aspect_ratio(image_size, size, max_size)
+
+ size = get_size(image.size, size, max_size)
+ rescaled_image = F.resize(image, size)
+
+ if target is None:
+ return rescaled_image, None
+
+ ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(rescaled_image.size, image.size))
+ ratio_width, ratio_height = ratios
+
+ target = target.copy()
+ if "boxes" in target:
+ boxes = target["boxes"]
+ scaled_boxes = boxes * torch.as_tensor([ratio_width, ratio_height, ratio_width, ratio_height])
+ target["boxes"] = scaled_boxes
+
+ if "area" in target:
+ area = target["area"]
+ scaled_area = area * (ratio_width * ratio_height)
+ target["area"] = scaled_area
+
+
+ if "keypoints" in target:
+ keypoints = target["keypoints"]
+ scaled_keypoints = keypoints * torch.as_tensor([ratio_width, ratio_height, 1])
+ target["keypoints"] = scaled_keypoints
+
+ h, w = size
+ target["size"] = torch.tensor([h, w])
+
+ if "masks" in target:
+ target['masks'] = interpolate(
+ target['masks'][:, None].float(), size, mode="nearest")[:, 0] > 0.5
+
+ return rescaled_image, target
+
+
+def pad(image, target, padding):
+ # assumes that we only pad on the bottom right corners
+ padded_image = F.pad(image, (0, 0, padding[0], padding[1]))
+ if target is None:
+ return padded_image, None
+ target = target.copy()
+ # should we do something wrt the original size?
+ target["size"] = torch.tensor(padded_image.size[::-1])
+ if "masks" in target:
+ target['masks'] = torch.nn.functional.pad(target['masks'], (0, padding[0], 0, padding[1]))
+ return padded_image, target
+
+
+class ResizeDebug(object):
+ def __init__(self, size):
+ self.size = size
+
+ def __call__(self, img, target):
+ return resize(img, target, self.size)
+
+
+class RandomCrop(object):
+ def __init__(self, size):
+ self.size = size
+
+ def __call__(self, img, target):
+ region = T.RandomCrop.get_params(img, self.size)
+ return crop(img, target, region)
+
+
+class RandomSizeCrop(object):
+ def __init__(self, min_size: int, max_size: int, respect_boxes: bool = False):
+ # respect_boxes: True to keep all boxes
+ # False to tolerence box filter
+ self.min_size = min_size
+ self.max_size = max_size
+ self.respect_boxes = respect_boxes
+
+ def __call__(self, img: PIL.Image.Image, target: dict):
+ init_boxes = len(target["boxes"]) if (target is not None and "boxes" in target) else 0
+ max_patience = 10
+ for i in range(max_patience):
+ w = random.randint(self.min_size, min(img.width, self.max_size))
+ h = random.randint(self.min_size, min(img.height, self.max_size))
+ region = T.RandomCrop.get_params(img, [h, w])
+ result_img, result_target = crop(img, target, region)
+ if target is not None:
+ if not self.respect_boxes or len(result_target["boxes"]) == init_boxes or i == max_patience - 1:
+ return result_img, result_target
+ return result_img, result_target
+
+
+class CenterCrop(object):
+ def __init__(self, size):
+ self.size = size
+
+ def __call__(self, img, target):
+ image_width, image_height = img.size
+ crop_height, crop_width = self.size
+ crop_top = int(round((image_height - crop_height) / 2.))
+ crop_left = int(round((image_width - crop_width) / 2.))
+ return crop(img, target, (crop_top, crop_left, crop_height, crop_width))
+
+
+class RandomHorizontalFlip(object):
+ def __init__(self, p=0.5):
+ self.p = p
+
+ def __call__(self, img, target):
+ if random.random() < self.p:
+ return hflip(img, target)
+ return img, target
+
+
+class RandomResize(object):
+ def __init__(self, sizes, max_size=None):
+ assert isinstance(sizes, (list, tuple))
+ self.sizes = sizes
+ self.max_size = max_size
+
+ def __call__(self, img, target=None):
+ size = random.choice(self.sizes)
+ return resize(img, target, size, self.max_size)
+
+
+class RandomPad(object):
+ def __init__(self, max_pad):
+ self.max_pad = max_pad
+
+ def __call__(self, img, target):
+ pad_x = random.randint(0, self.max_pad)
+ pad_y = random.randint(0, self.max_pad)
+ return pad(img, target, (pad_x, pad_y))
+
+
+class RandomSelect(object):
+ """
+ Randomly selects between transforms1 and transforms2,
+ with probability p for transforms1 and (1 - p) for transforms2
+ """
+ def __init__(self, transforms1, transforms2, p=0.5):
+ self.transforms1 = transforms1
+ self.transforms2 = transforms2
+ self.p = p
+
+ def __call__(self, img, target):
+ if random.random() < self.p:
+ return self.transforms1(img, target)
+ return self.transforms2(img, target)
+
+
+class ToTensor(object):
+ def __call__(self, img, target):
+ return F.to_tensor(img), target
+
+
+class RandomErasing(object):
+
+ def __init__(self, *args, **kwargs):
+ self.eraser = T.RandomErasing(*args, **kwargs)
+
+ def __call__(self, img, target):
+ return self.eraser(img), target
+
+
+class Normalize(object):
+ def __init__(self, mean, std):
+ self.mean = mean
+ self.std = std
+
+ def __call__(self, image, target=None):
+ image = F.normalize(image, mean=self.mean, std=self.std)
+ if target is None:
+ return image, None
+ target = target.copy()
+ h, w = image.shape[-2:]
+ if "boxes" in target:
+ boxes = target["boxes"]
+ boxes = box_xyxy_to_cxcywh(boxes)
+ boxes = boxes / torch.tensor([w, h, w, h], dtype=torch.float32)
+ target["boxes"] = boxes
+
+ if "area" in target:
+ area = target["area"]
+ area = area / (torch.tensor(w, dtype=torch.float32)*torch.tensor(h, dtype=torch.float32))
+ target["area"] = area
+
+ if "keypoints" in target:
+ keypoints = target["keypoints"]
+ V = keypoints[:, :, 2]
+ V[V == 2] = 1
+ Z=keypoints[:, :, :2]
+ Z = Z.contiguous().view(-1, 2 * V.shape[-1])
+ Z = Z / torch.tensor([w, h] * V.shape[-1], dtype=torch.float32)
+ target["valid_kpt_num"] = V.shape[1]
+ Z_pad = torch.zeros(Z.shape[0],68 * 2 - Z.shape[1])
+ V_pad = torch.zeros(V.shape[0],68 - V.shape[1])
+ V=torch.cat([V, V_pad], dim=1)
+ Z=torch.cat([Z, Z_pad], dim=1)
+ all_keypoints = torch.cat([Z, V], dim=1)
+ target["keypoints"] = all_keypoints
+
+
+ return image, target
+
+
+class Compose(object):
+ def __init__(self, transforms):
+ self.transforms = transforms
+
+ def __call__(self, image, target):
+ for t in self.transforms:
+ image, target = t(image, target)
+ return image, target
+
+ def __repr__(self):
+ format_string = self.__class__.__name__ + "("
+ for t in self.transforms:
+ format_string += "\n"
+ format_string += " {0}".format(t)
+ format_string += "\n)"
+ return format_string
diff --git a/src/utils/dependencies/XPose/util/addict.py b/src/utils/dependencies/XPose/util/addict.py
new file mode 100644
index 0000000..55e02d1
--- /dev/null
+++ b/src/utils/dependencies/XPose/util/addict.py
@@ -0,0 +1,159 @@
+import copy
+
+
+class Dict(dict):
+
+ def __init__(__self, *args, **kwargs):
+ object.__setattr__(__self, '__parent', kwargs.pop('__parent', None))
+ object.__setattr__(__self, '__key', kwargs.pop('__key', None))
+ object.__setattr__(__self, '__frozen', False)
+ for arg in args:
+ if not arg:
+ continue
+ elif isinstance(arg, dict):
+ for key, val in arg.items():
+ __self[key] = __self._hook(val)
+ elif isinstance(arg, tuple) and (not isinstance(arg[0], tuple)):
+ __self[arg[0]] = __self._hook(arg[1])
+ else:
+ for key, val in iter(arg):
+ __self[key] = __self._hook(val)
+
+ for key, val in kwargs.items():
+ __self[key] = __self._hook(val)
+
+ def __setattr__(self, name, value):
+ if hasattr(self.__class__, name):
+ raise AttributeError("'Dict' object attribute "
+ "'{0}' is read-only".format(name))
+ else:
+ self[name] = value
+
+ def __setitem__(self, name, value):
+ isFrozen = (hasattr(self, '__frozen') and
+ object.__getattribute__(self, '__frozen'))
+ if isFrozen and name not in super(Dict, self).keys():
+ raise KeyError(name)
+ super(Dict, self).__setitem__(name, value)
+ try:
+ p = object.__getattribute__(self, '__parent')
+ key = object.__getattribute__(self, '__key')
+ except AttributeError:
+ p = None
+ key = None
+ if p is not None:
+ p[key] = self
+ object.__delattr__(self, '__parent')
+ object.__delattr__(self, '__key')
+
+ def __add__(self, other):
+ if not self.keys():
+ return other
+ else:
+ self_type = type(self).__name__
+ other_type = type(other).__name__
+ msg = "unsupported operand type(s) for +: '{}' and '{}'"
+ raise TypeError(msg.format(self_type, other_type))
+
+ @classmethod
+ def _hook(cls, item):
+ if isinstance(item, dict):
+ return cls(item)
+ elif isinstance(item, (list, tuple)):
+ return type(item)(cls._hook(elem) for elem in item)
+ return item
+
+ def __getattr__(self, item):
+ return self.__getitem__(item)
+
+ def __missing__(self, name):
+ if object.__getattribute__(self, '__frozen'):
+ raise KeyError(name)
+ return self.__class__(__parent=self, __key=name)
+
+ def __delattr__(self, name):
+ del self[name]
+
+ def to_dict(self):
+ base = {}
+ for key, value in self.items():
+ if isinstance(value, type(self)):
+ base[key] = value.to_dict()
+ elif isinstance(value, (list, tuple)):
+ base[key] = type(value)(
+ item.to_dict() if isinstance(item, type(self)) else
+ item for item in value)
+ else:
+ base[key] = value
+ return base
+
+ def copy(self):
+ return copy.copy(self)
+
+ def deepcopy(self):
+ return copy.deepcopy(self)
+
+ def __deepcopy__(self, memo):
+ other = self.__class__()
+ memo[id(self)] = other
+ for key, value in self.items():
+ other[copy.deepcopy(key, memo)] = copy.deepcopy(value, memo)
+ return other
+
+ def update(self, *args, **kwargs):
+ other = {}
+ if args:
+ if len(args) > 1:
+ raise TypeError()
+ other.update(args[0])
+ other.update(kwargs)
+ for k, v in other.items():
+ if ((k not in self) or
+ (not isinstance(self[k], dict)) or
+ (not isinstance(v, dict))):
+ self[k] = v
+ else:
+ self[k].update(v)
+
+ def __getnewargs__(self):
+ return tuple(self.items())
+
+ def __getstate__(self):
+ return self
+
+ def __setstate__(self, state):
+ self.update(state)
+
+ def __or__(self, other):
+ if not isinstance(other, (Dict, dict)):
+ return NotImplemented
+ new = Dict(self)
+ new.update(other)
+ return new
+
+ def __ror__(self, other):
+ if not isinstance(other, (Dict, dict)):
+ return NotImplemented
+ new = Dict(other)
+ new.update(self)
+ return new
+
+ def __ior__(self, other):
+ self.update(other)
+ return self
+
+ def setdefault(self, key, default=None):
+ if key in self:
+ return self[key]
+ else:
+ self[key] = default
+ return default
+
+ def freeze(self, shouldFreeze=True):
+ object.__setattr__(self, '__frozen', shouldFreeze)
+ for key, val in self.items():
+ if isinstance(val, Dict):
+ val.freeze(shouldFreeze)
+
+ def unfreeze(self):
+ self.freeze(False)
diff --git a/src/utils/dependencies/XPose/util/box_ops.py b/src/utils/dependencies/XPose/util/box_ops.py
new file mode 100644
index 0000000..fff6624
--- /dev/null
+++ b/src/utils/dependencies/XPose/util/box_ops.py
@@ -0,0 +1,139 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Utilities for bounding box manipulation and GIoU.
+"""
+import torch, os
+from torchvision.ops.boxes import box_area
+
+
+def box_cxcywh_to_xyxy(x):
+ x_c, y_c, w, h = x.unbind(-1)
+ b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
+ (x_c + 0.5 * w), (y_c + 0.5 * h)]
+ return torch.stack(b, dim=-1)
+
+
+def box_xyxy_to_cxcywh(x):
+ x0, y0, x1, y1 = x.unbind(-1)
+ b = [(x0 + x1) / 2, (y0 + y1) / 2,
+ (x1 - x0), (y1 - y0)]
+ return torch.stack(b, dim=-1)
+
+
+# modified from torchvision to also return the union
+def box_iou(boxes1, boxes2):
+ area1 = box_area(boxes1)
+ area2 = box_area(boxes2)
+
+ # import ipdb; ipdb.set_trace()
+ lt = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2]
+ rb = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2]
+
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
+ inter = wh[:, :, 0] * wh[:, :, 1] # [N,M]
+
+ union = area1[:, None] + area2 - inter
+
+ iou = inter / (union + 1e-6)
+ return iou, union
+
+
+def generalized_box_iou(boxes1, boxes2):
+ """
+ Generalized IoU from https://giou.stanford.edu/
+
+ The boxes should be in [x0, y0, x1, y1] format
+
+ Returns a [N, M] pairwise matrix, where N = len(boxes1)
+ and M = len(boxes2)
+ """
+ # degenerate boxes gives inf / nan results
+ # so do an early check
+ assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
+ assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
+ # except:
+ # import ipdb; ipdb.set_trace()
+ iou, union = box_iou(boxes1, boxes2)
+
+ lt = torch.min(boxes1[:, None, :2], boxes2[:, :2])
+ rb = torch.max(boxes1[:, None, 2:], boxes2[:, 2:])
+
+ wh = (rb - lt).clamp(min=0) # [N,M,2]
+ area = wh[:, :, 0] * wh[:, :, 1]
+
+ return iou - (area - union) / (area + 1e-6)
+
+
+
+# modified from torchvision to also return the union
+def box_iou_pairwise(boxes1, boxes2):
+ area1 = box_area(boxes1)
+ area2 = box_area(boxes2)
+
+ lt = torch.max(boxes1[:, :2], boxes2[:, :2]) # [N,2]
+ rb = torch.min(boxes1[:, 2:], boxes2[:, 2:]) # [N,2]
+
+ wh = (rb - lt).clamp(min=0) # [N,2]
+ inter = wh[:, 0] * wh[:, 1] # [N]
+
+ union = area1 + area2 - inter
+
+ iou = inter / union
+ return iou, union
+
+
+def generalized_box_iou_pairwise(boxes1, boxes2):
+ """
+ Generalized IoU from https://giou.stanford.edu/
+
+ Input:
+ - boxes1, boxes2: N,4
+ Output:
+ - giou: N, 4
+ """
+ # degenerate boxes gives inf / nan results
+ # so do an early check
+ assert (boxes1[:, 2:] >= boxes1[:, :2]).all()
+ assert (boxes2[:, 2:] >= boxes2[:, :2]).all()
+ assert boxes1.shape == boxes2.shape
+ iou, union = box_iou_pairwise(boxes1, boxes2) # N, 4
+
+ lt = torch.min(boxes1[:, :2], boxes2[:, :2])
+ rb = torch.max(boxes1[:, 2:], boxes2[:, 2:])
+
+ wh = (rb - lt).clamp(min=0) # [N,2]
+ area = wh[:, 0] * wh[:, 1]
+
+ return iou - (area - union) / area
+
+def masks_to_boxes(masks):
+ """Compute the bounding boxes around the provided masks
+
+ The masks should be in format [N, H, W] where N is the number of masks, (H, W) are the spatial dimensions.
+
+ Returns a [N, 4] tensors, with the boxes in xyxy format
+ """
+ if masks.numel() == 0:
+ return torch.zeros((0, 4), device=masks.device)
+
+ h, w = masks.shape[-2:]
+
+ y = torch.arange(0, h, dtype=torch.float)
+ x = torch.arange(0, w, dtype=torch.float)
+ y, x = torch.meshgrid(y, x)
+
+ x_mask = (masks * x.unsqueeze(0))
+ x_max = x_mask.flatten(1).max(-1)[0]
+ x_min = x_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+ y_mask = (masks * y.unsqueeze(0))
+ y_max = y_mask.flatten(1).max(-1)[0]
+ y_min = y_mask.masked_fill(~(masks.bool()), 1e8).flatten(1).min(-1)[0]
+
+ return torch.stack([x_min, y_min, x_max, y_max], 1)
+
+if __name__ == '__main__':
+ x = torch.rand(5, 4)
+ y = torch.rand(3, 4)
+ iou, union = box_iou(x, y)
+ import ipdb; ipdb.set_trace()
diff --git a/src/utils/dependencies/XPose/util/config.py b/src/utils/dependencies/XPose/util/config.py
new file mode 100644
index 0000000..c43eb3d
--- /dev/null
+++ b/src/utils/dependencies/XPose/util/config.py
@@ -0,0 +1,426 @@
+# ==========================================================
+# Modified from mmcv
+# ==========================================================
+import sys
+import os.path as osp
+import ast
+import tempfile
+import shutil
+from importlib import import_module
+from argparse import Action
+
+from .addict import Dict
+
+BASE_KEY = '_base_'
+DELETE_KEY = '_delete_'
+RESERVED_KEYS = ['filename', 'text', 'pretty_text', 'get', 'dump', 'merge_from_dict']
+
+
+def check_file_exist(filename, msg_tmpl='file "{}" does not exist'):
+ if not osp.isfile(filename):
+ raise FileNotFoundError(msg_tmpl.format(filename))
+
+class ConfigDict(Dict):
+
+ def __missing__(self, name):
+ raise KeyError(name)
+
+ def __getattr__(self, name):
+ try:
+ value = super(ConfigDict, self).__getattr__(name)
+ except KeyError:
+ ex = AttributeError(f"'{self.__class__.__name__}' object has no "
+ f"attribute '{name}'")
+ except Exception as e:
+ ex = e
+ else:
+ return value
+ raise ex
+
+
+class Config(object):
+ """
+ config files.
+ only support .py file as config now.
+
+ ref: mmcv.utils.config
+
+ Example:
+ >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1])))
+ >>> cfg.a
+ 1
+ >>> cfg.b
+ {'b1': [0, 1]}
+ >>> cfg.b.b1
+ [0, 1]
+ >>> cfg = Config.fromfile('tests/data/config/a.py')
+ >>> cfg.filename
+ "/home/kchen/projects/mmcv/tests/data/config/a.py"
+ >>> cfg.item4
+ 'test'
+ >>> cfg
+ "Config [path: /home/kchen/projects/mmcv/tests/data/config/a.py]: "
+ "{'item1': [1, 2], 'item2': {'a': 0}, 'item3': True, 'item4': 'test'}"
+ """
+ @staticmethod
+ def _validate_py_syntax(filename):
+ with open(filename) as f:
+ content = f.read()
+ try:
+ ast.parse(content)
+ except SyntaxError:
+ raise SyntaxError('There are syntax errors in config '
+ f'file {filename}')
+
+ @staticmethod
+ def _file2dict(filename):
+ filename = osp.abspath(osp.expanduser(filename))
+ check_file_exist(filename)
+ if filename.lower().endswith('.py'):
+ with tempfile.TemporaryDirectory() as temp_config_dir:
+ temp_config_file = tempfile.NamedTemporaryFile(
+ dir=temp_config_dir, suffix='.py')
+ temp_config_name = osp.basename(temp_config_file.name)
+ shutil.copyfile(filename,
+ osp.join(temp_config_dir, temp_config_name))
+ temp_module_name = osp.splitext(temp_config_name)[0]
+ sys.path.insert(0, temp_config_dir)
+ Config._validate_py_syntax(filename)
+ mod = import_module(temp_module_name)
+ sys.path.pop(0)
+ cfg_dict = {
+ name: value
+ for name, value in mod.__dict__.items()
+ if not name.startswith('__')
+ }
+ # delete imported module
+ del sys.modules[temp_module_name]
+ # close temp file
+ temp_config_file.close()
+ elif filename.lower().endswith(('.yml', '.yaml', '.json')):
+ from .slio import slload
+ cfg_dict = slload(filename)
+ else:
+ raise IOError('Only py/yml/yaml/json type are supported now!')
+
+ cfg_text = filename + '\n'
+ with open(filename, 'r') as f:
+ cfg_text += f.read()
+
+ # parse the base file
+ if BASE_KEY in cfg_dict:
+ cfg_dir = osp.dirname(filename)
+ base_filename = cfg_dict.pop(BASE_KEY)
+ base_filename = base_filename if isinstance(
+ base_filename, list) else [base_filename]
+
+ cfg_dict_list = list()
+ cfg_text_list = list()
+ for f in base_filename:
+ _cfg_dict, _cfg_text = Config._file2dict(osp.join(cfg_dir, f))
+ cfg_dict_list.append(_cfg_dict)
+ cfg_text_list.append(_cfg_text)
+
+ base_cfg_dict = dict()
+ for c in cfg_dict_list:
+ if len(base_cfg_dict.keys() & c.keys()) > 0:
+ raise KeyError('Duplicate key is not allowed among bases')
+ # TODO Allow the duplicate key while warnning user
+ base_cfg_dict.update(c)
+
+ base_cfg_dict = Config._merge_a_into_b(cfg_dict, base_cfg_dict)
+ cfg_dict = base_cfg_dict
+
+ # merge cfg_text
+ cfg_text_list.append(cfg_text)
+ cfg_text = '\n'.join(cfg_text_list)
+
+ return cfg_dict, cfg_text
+
+ @staticmethod
+ def _merge_a_into_b(a, b):
+ """merge dict `a` into dict `b` (non-inplace).
+ values in `a` will overwrite `b`.
+ copy first to avoid inplace modification
+
+ Args:
+ a ([type]): [description]
+ b ([type]): [description]
+
+ Returns:
+ [dict]: [description]
+ """
+ # import ipdb; ipdb.set_trace()
+ if not isinstance(a, dict):
+ return a
+
+ b = b.copy()
+ for k, v in a.items():
+ if isinstance(v, dict) and k in b and not v.pop(DELETE_KEY, False):
+
+ if not isinstance(b[k], dict) and not isinstance(b[k], list):
+ # if :
+ # import ipdb; ipdb.set_trace()
+ raise TypeError(
+ f'{k}={v} in child config cannot inherit from base '
+ f'because {k} is a dict in the child config but is of '
+ f'type {type(b[k])} in base config. You may set '
+ f'`{DELETE_KEY}=True` to ignore the base config')
+ b[k] = Config._merge_a_into_b(v, b[k])
+ elif isinstance(b, list):
+ try:
+ _ = int(k)
+ except:
+ raise TypeError(
+ f'b is a list, '
+ f'index {k} should be an int when input but {type(k)}'
+ )
+ b[int(k)] = Config._merge_a_into_b(v, b[int(k)])
+ else:
+ b[k] = v
+
+ return b
+
+ @staticmethod
+ def fromfile(filename):
+ cfg_dict, cfg_text = Config._file2dict(filename)
+ return Config(cfg_dict, cfg_text=cfg_text, filename=filename)
+
+
+ def __init__(self, cfg_dict=None, cfg_text=None, filename=None):
+ if cfg_dict is None:
+ cfg_dict = dict()
+ elif not isinstance(cfg_dict, dict):
+ raise TypeError('cfg_dict must be a dict, but '
+ f'got {type(cfg_dict)}')
+ for key in cfg_dict:
+ if key in RESERVED_KEYS:
+ raise KeyError(f'{key} is reserved for config file')
+
+ super(Config, self).__setattr__('_cfg_dict', ConfigDict(cfg_dict))
+ super(Config, self).__setattr__('_filename', filename)
+ if cfg_text:
+ text = cfg_text
+ elif filename:
+ with open(filename, 'r') as f:
+ text = f.read()
+ else:
+ text = ''
+ super(Config, self).__setattr__('_text', text)
+
+
+ @property
+ def filename(self):
+ return self._filename
+
+ @property
+ def text(self):
+ return self._text
+
+ @property
+ def pretty_text(self):
+
+ indent = 4
+
+ def _indent(s_, num_spaces):
+ s = s_.split('\n')
+ if len(s) == 1:
+ return s_
+ first = s.pop(0)
+ s = [(num_spaces * ' ') + line for line in s]
+ s = '\n'.join(s)
+ s = first + '\n' + s
+ return s
+
+ def _format_basic_types(k, v, use_mapping=False):
+ if isinstance(v, str):
+ v_str = f"'{v}'"
+ else:
+ v_str = str(v)
+
+ if use_mapping:
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
+ attr_str = f'{k_str}: {v_str}'
+ else:
+ attr_str = f'{str(k)}={v_str}'
+ attr_str = _indent(attr_str, indent)
+
+ return attr_str
+
+ def _format_list(k, v, use_mapping=False):
+ # check if all items in the list are dict
+ if all(isinstance(_, dict) for _ in v):
+ v_str = '[\n'
+ v_str += '\n'.join(
+ f'dict({_indent(_format_dict(v_), indent)}),'
+ for v_ in v).rstrip(',')
+ if use_mapping:
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
+ attr_str = f'{k_str}: {v_str}'
+ else:
+ attr_str = f'{str(k)}={v_str}'
+ attr_str = _indent(attr_str, indent) + ']'
+ else:
+ attr_str = _format_basic_types(k, v, use_mapping)
+ return attr_str
+
+ def _contain_invalid_identifier(dict_str):
+ contain_invalid_identifier = False
+ for key_name in dict_str:
+ contain_invalid_identifier |= \
+ (not str(key_name).isidentifier())
+ return contain_invalid_identifier
+
+ def _format_dict(input_dict, outest_level=False):
+ r = ''
+ s = []
+
+ use_mapping = _contain_invalid_identifier(input_dict)
+ if use_mapping:
+ r += '{'
+ for idx, (k, v) in enumerate(input_dict.items()):
+ is_last = idx >= len(input_dict) - 1
+ end = '' if outest_level or is_last else ','
+ if isinstance(v, dict):
+ v_str = '\n' + _format_dict(v)
+ if use_mapping:
+ k_str = f"'{k}'" if isinstance(k, str) else str(k)
+ attr_str = f'{k_str}: dict({v_str}'
+ else:
+ attr_str = f'{str(k)}=dict({v_str}'
+ attr_str = _indent(attr_str, indent) + ')' + end
+ elif isinstance(v, list):
+ attr_str = _format_list(k, v, use_mapping) + end
+ else:
+ attr_str = _format_basic_types(k, v, use_mapping) + end
+
+ s.append(attr_str)
+ r += '\n'.join(s)
+ if use_mapping:
+ r += '}'
+ return r
+
+ cfg_dict = self._cfg_dict.to_dict()
+ text = _format_dict(cfg_dict, outest_level=True)
+ return text
+
+
+ def __repr__(self):
+ return f'Config (path: {self.filename}): {self._cfg_dict.__repr__()}'
+
+ def __len__(self):
+ return len(self._cfg_dict)
+
+ def __getattr__(self, name):
+ # # debug
+ # print('+'*15)
+ # print('name=%s' % name)
+ # print("addr:", id(self))
+ # # print('type(self):', type(self))
+ # print(self.__dict__)
+ # print('+'*15)
+ # if self.__dict__ == {}:
+ # raise ValueError
+
+ return getattr(self._cfg_dict, name)
+
+ def __getitem__(self, name):
+ return self._cfg_dict.__getitem__(name)
+
+ def __setattr__(self, name, value):
+ if isinstance(value, dict):
+ value = ConfigDict(value)
+ self._cfg_dict.__setattr__(name, value)
+
+ def __setitem__(self, name, value):
+ if isinstance(value, dict):
+ value = ConfigDict(value)
+ self._cfg_dict.__setitem__(name, value)
+
+ def __iter__(self):
+ return iter(self._cfg_dict)
+
+ def dump(self, file=None):
+ # import ipdb; ipdb.set_trace()
+ if file is None:
+ return self.pretty_text
+ else:
+ with open(file, 'w') as f:
+ f.write(self.pretty_text)
+
+ def merge_from_dict(self, options):
+ """Merge list into cfg_dict
+
+ Merge the dict parsed by MultipleKVAction into this cfg.
+
+ Examples:
+ >>> options = {'model.backbone.depth': 50,
+ ... 'model.backbone.with_cp':True}
+ >>> cfg = Config(dict(model=dict(backbone=dict(type='ResNet'))))
+ >>> cfg.merge_from_dict(options)
+ >>> cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
+ >>> assert cfg_dict == dict(
+ ... model=dict(backbone=dict(depth=50, with_cp=True)))
+
+ Args:
+ options (dict): dict of configs to merge from.
+ """
+ option_cfg_dict = {}
+ for full_key, v in options.items():
+ d = option_cfg_dict
+ key_list = full_key.split('.')
+ for subkey in key_list[:-1]:
+ d.setdefault(subkey, ConfigDict())
+ d = d[subkey]
+ subkey = key_list[-1]
+ d[subkey] = v
+
+ cfg_dict = super(Config, self).__getattribute__('_cfg_dict')
+ super(Config, self).__setattr__(
+ '_cfg_dict', Config._merge_a_into_b(option_cfg_dict, cfg_dict))
+
+ # for multiprocess
+ def __setstate__(self, state):
+ self.__init__(state)
+
+
+ def copy(self):
+ return Config(self._cfg_dict.copy())
+
+ def deepcopy(self):
+ return Config(self._cfg_dict.deepcopy())
+
+
+class DictAction(Action):
+ """
+ argparse action to split an argument into KEY=VALUE form
+ on the first = and append to a dictionary. List options should
+ be passed as comma separated values, i.e KEY=V1,V2,V3
+ """
+
+ @staticmethod
+ def _parse_int_float_bool(val):
+ try:
+ return int(val)
+ except ValueError:
+ pass
+ try:
+ return float(val)
+ except ValueError:
+ pass
+ if val.lower() in ['true', 'false']:
+ return True if val.lower() == 'true' else False
+ if val.lower() in ['none', 'null']:
+ return None
+ return val
+
+ def __call__(self, parser, namespace, values, option_string=None):
+ options = {}
+ for kv in values:
+ key, val = kv.split('=', maxsplit=1)
+ val = [self._parse_int_float_bool(v) for v in val.split(',')]
+ if len(val) == 1:
+ val = val[0]
+ options[key] = val
+ setattr(namespace, self.dest, options)
+
diff --git a/src/utils/dependencies/XPose/util/keypoint_ops.py b/src/utils/dependencies/XPose/util/keypoint_ops.py
new file mode 100644
index 0000000..036d813
--- /dev/null
+++ b/src/utils/dependencies/XPose/util/keypoint_ops.py
@@ -0,0 +1,29 @@
+import torch, os
+
+def keypoint_xyxyzz_to_xyzxyz(keypoints: torch.Tensor):
+ """_summary_
+
+ Args:
+ keypoints (torch.Tensor): ..., 51
+ """
+ res = torch.zeros_like(keypoints)
+ num_points = keypoints.shape[-1] // 3
+ Z = keypoints[..., :2*num_points]
+ V = keypoints[..., 2*num_points:]
+ res[...,0::3] = Z[..., 0::2]
+ res[...,1::3] = Z[..., 1::2]
+ res[...,2::3] = V[...]
+ return res
+
+def keypoint_xyzxyz_to_xyxyzz(keypoints: torch.Tensor):
+ """_summary_
+
+ Args:
+ keypoints (torch.Tensor): ..., 51
+ """
+ res = torch.zeros_like(keypoints)
+ num_points = keypoints.shape[-1] // 3
+ res[...,0:2*num_points:2] = keypoints[..., 0::3]
+ res[...,1:2*num_points:2] = keypoints[..., 1::3]
+ res[...,2*num_points:] = keypoints[..., 2::3]
+ return res
\ No newline at end of file
diff --git a/src/utils/dependencies/XPose/util/misc.py b/src/utils/dependencies/XPose/util/misc.py
new file mode 100644
index 0000000..0fa90f3
--- /dev/null
+++ b/src/utils/dependencies/XPose/util/misc.py
@@ -0,0 +1,701 @@
+# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
+"""
+Misc functions, including distributed helpers.
+
+Mostly copy-paste from torchvision references.
+"""
+import functools
+import io
+import os
+import random
+import subprocess
+import time
+from collections import OrderedDict, defaultdict, deque
+import datetime
+import pickle
+from typing import Optional, List
+
+import json, time
+import numpy as np
+import torch
+import torch.distributed as dist
+from torch import Tensor
+
+import colorsys
+
+# needed due to empty tensor bug in pytorch and torchvision 0.5
+import torchvision
+__torchvision_need_compat_flag = float(torchvision.__version__.split('.')[1]) < 7
+if __torchvision_need_compat_flag:
+ from torchvision.ops import _new_empty_tensor
+ from torchvision.ops.misc import _output_size
+
+
+class SmoothedValue(object):
+ """Track a series of values and provide access to smoothed values over a
+ window or the global series average.
+ """
+
+ def __init__(self, window_size=20, fmt=None):
+ if fmt is None:
+ fmt = "{median:.4f} ({global_avg:.4f})"
+ self.deque = deque(maxlen=window_size)
+ self.total = 0.0
+ self.count = 0
+ self.fmt = fmt
+
+ def update(self, value, n=1):
+ self.deque.append(value)
+ self.count += n
+ self.total += value * n
+
+ def synchronize_between_processes(self):
+ """
+ Warning: does not synchronize the deque!
+ """
+ if not is_dist_avail_and_initialized():
+ return
+ t = torch.tensor([self.count, self.total], dtype=torch.float64, device='cuda')
+ dist.barrier()
+ dist.all_reduce(t)
+ t = t.tolist()
+ self.count = int(t[0])
+ self.total = t[1]
+
+ @property
+ def median(self):
+ d = torch.tensor(list(self.deque))
+ if d.shape[0] == 0:
+ return 0
+ return d.median().item()
+
+ @property
+ def avg(self):
+ d = torch.tensor(list(self.deque), dtype=torch.float32)
+ return d.mean().item()
+
+ @property
+ def global_avg(self):
+ if os.environ.get("SHILONG_AMP", None) == '1':
+ eps = 1e-4
+ else:
+ eps = 1e-6
+ return self.total / (self.count + eps)
+
+ @property
+ def max(self):
+ return max(self.deque)
+
+ @property
+ def value(self):
+ return self.deque[-1]
+
+ def __str__(self):
+ return self.fmt.format(
+ median=self.median,
+ avg=self.avg,
+ global_avg=self.global_avg,
+ max=self.max,
+ value=self.value)
+
+@functools.lru_cache()
+def _get_global_gloo_group():
+ """
+ Return a process group based on gloo backend, containing all the ranks
+ The result is cached.
+ """
+
+ if dist.get_backend() == "nccl":
+ return dist.new_group(backend="gloo")
+
+ return dist.group.WORLD
+
+def all_gather_cpu(data):
+ """
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
+ Args:
+ data: any picklable object
+ Returns:
+ list[data]: list of data gathered from each rank
+ """
+
+ world_size = get_world_size()
+ if world_size == 1:
+ return [data]
+
+ cpu_group = _get_global_gloo_group()
+
+ buffer = io.BytesIO()
+ torch.save(data, buffer)
+ data_view = buffer.getbuffer()
+ device = "cuda" if cpu_group is None else "cpu"
+ tensor = torch.ByteTensor(data_view).to(device)
+
+ # obtain Tensor size of each rank
+ local_size = torch.tensor([tensor.numel()], device=device, dtype=torch.long)
+ size_list = [torch.tensor([0], device=device, dtype=torch.long) for _ in range(world_size)]
+ if cpu_group is None:
+ dist.all_gather(size_list, local_size)
+ else:
+ print("gathering on cpu")
+ dist.all_gather(size_list, local_size, group=cpu_group)
+ size_list = [int(size.item()) for size in size_list]
+ max_size = max(size_list)
+ assert isinstance(local_size.item(), int)
+ local_size = int(local_size.item())
+
+ # receiving Tensor from all ranks
+ # we pad the tensor because torch all_gather does not support
+ # gathering tensors of different shapes
+ tensor_list = []
+ for _ in size_list:
+ tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device=device))
+ if local_size != max_size:
+ padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device=device)
+ tensor = torch.cat((tensor, padding), dim=0)
+ if cpu_group is None:
+ dist.all_gather(tensor_list, tensor)
+ else:
+ dist.all_gather(tensor_list, tensor, group=cpu_group)
+
+ data_list = []
+ for size, tensor in zip(size_list, tensor_list):
+ tensor = torch.split(tensor, [size, max_size - size], dim=0)[0]
+ buffer = io.BytesIO(tensor.cpu().numpy())
+ obj = torch.load(buffer)
+ data_list.append(obj)
+
+ return data_list
+
+
+def all_gather(data):
+ """
+ Run all_gather on arbitrary picklable data (not necessarily tensors)
+ Args:
+ data: any picklable object
+ Returns:
+ list[data]: list of data gathered from each rank
+ """
+
+ if os.getenv("CPU_REDUCE") == "1":
+ return all_gather_cpu(data)
+
+
+
+ world_size = get_world_size()
+ if world_size == 1:
+ return [data]
+
+ # serialized to a Tensor
+ buffer = pickle.dumps(data)
+ storage = torch.ByteStorage.from_buffer(buffer)
+ tensor = torch.ByteTensor(storage).to("cuda")
+
+ # obtain Tensor size of each rank
+ local_size = torch.tensor([tensor.numel()], device="cuda")
+ size_list = [torch.tensor([0], device="cuda") for _ in range(world_size)]
+ dist.all_gather(size_list, local_size)
+ size_list = [int(size.item()) for size in size_list]
+ max_size = max(size_list)
+
+ # receiving Tensor from all ranks
+ # we pad the tensor because torch all_gather does not support
+ # gathering tensors of different shapes
+ tensor_list = []
+ for _ in size_list:
+ tensor_list.append(torch.empty((max_size,), dtype=torch.uint8, device="cuda"))
+ if local_size != max_size:
+ padding = torch.empty(size=(max_size - local_size,), dtype=torch.uint8, device="cuda")
+ tensor = torch.cat((tensor, padding), dim=0)
+ dist.all_gather(tensor_list, tensor)
+
+ data_list = []
+ for size, tensor in zip(size_list, tensor_list):
+ buffer = tensor.cpu().numpy().tobytes()[:size]
+ data_list.append(pickle.loads(buffer))
+
+ return data_list
+
+
+def reduce_dict(input_dict, average=True):
+ """
+ Args:
+ input_dict (dict): all the values will be reduced
+ average (bool): whether to do average or sum
+ Reduce the values in the dictionary from all processes so that all processes
+ have the averaged results. Returns a dict with the same fields as
+ input_dict, after reduction.
+ """
+ world_size = get_world_size()
+ if world_size < 2:
+ return input_dict
+ with torch.no_grad():
+ names = []
+ values = []
+ # sort the keys so that they are consistent across processes
+ for k in sorted(input_dict.keys()):
+ names.append(k)
+ values.append(input_dict[k])
+ values = torch.stack(values, dim=0)
+ dist.all_reduce(values)
+ if average:
+ values /= world_size
+ reduced_dict = {k: v for k, v in zip(names, values)}
+ return reduced_dict
+
+
+class MetricLogger(object):
+ def __init__(self, delimiter="\t"):
+ self.meters = defaultdict(SmoothedValue)
+ self.delimiter = delimiter
+
+ def update(self, **kwargs):
+ for k, v in kwargs.items():
+ if isinstance(v, torch.Tensor):
+ v = v.item()
+ assert isinstance(v, (float, int))
+ self.meters[k].update(v)
+
+ def __getattr__(self, attr):
+ if attr in self.meters:
+ return self.meters[attr]
+ if attr in self.__dict__:
+ return self.__dict__[attr]
+ raise AttributeError("'{}' object has no attribute '{}'".format(
+ type(self).__name__, attr))
+
+ def __str__(self):
+ loss_str = []
+ for name, meter in self.meters.items():
+ # print(name, str(meter))
+ # import ipdb;ipdb.set_trace()
+ if meter.count > 0:
+ loss_str.append(
+ "{}: {}".format(name, str(meter))
+ )
+ return self.delimiter.join(loss_str)
+
+ def synchronize_between_processes(self):
+ for meter in self.meters.values():
+ meter.synchronize_between_processes()
+
+ def add_meter(self, name, meter):
+ self.meters[name] = meter
+
+ def log_every(self, iterable, print_freq, header=None, logger=None):
+ if logger is None:
+ print_func = print
+ else:
+ print_func = logger.info
+
+ i = 0
+ if not header:
+ header = ''
+ start_time = time.time()
+ end = time.time()
+ iter_time = SmoothedValue(fmt='{avg:.4f}')
+ data_time = SmoothedValue(fmt='{avg:.4f}')
+ space_fmt = ':' + str(len(str(len(iterable)))) + 'd'
+ if torch.cuda.is_available():
+ log_msg = self.delimiter.join([
+ header,
+ '[{0' + space_fmt + '}/{1}]',
+ 'eta: {eta}',
+ '{meters}',
+ 'time: {time}',
+ 'data: {data}',
+ 'max mem: {memory:.0f}'
+ ])
+ else:
+ log_msg = self.delimiter.join([
+ header,
+ '[{0' + space_fmt + '}/{1}]',
+ 'eta: {eta}',
+ '{meters}',
+ 'time: {time}',
+ 'data: {data}'
+ ])
+ MB = 1024.0 * 1024.0
+ for obj in iterable:
+ data_time.update(time.time() - end)
+ yield obj
+ # import ipdb; ipdb.set_trace()
+ iter_time.update(time.time() - end)
+ if i % print_freq == 0 or i == len(iterable) - 1:
+ eta_seconds = iter_time.global_avg * (len(iterable) - i)
+ eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
+ if torch.cuda.is_available():
+ print_func(log_msg.format(
+ i, len(iterable), eta=eta_string,
+ meters=str(self),
+ time=str(iter_time), data=str(data_time),
+ memory=torch.cuda.max_memory_allocated() / MB))
+ else:
+ print_func(log_msg.format(
+ i, len(iterable), eta=eta_string,
+ meters=str(self),
+ time=str(iter_time), data=str(data_time)))
+ i += 1
+ end = time.time()
+ total_time = time.time() - start_time
+ total_time_str = str(datetime.timedelta(seconds=int(total_time)))
+ print_func('{} Total time: {} ({:.4f} s / it)'.format(
+ header, total_time_str, total_time / len(iterable)))
+
+
+def get_sha():
+ cwd = os.path.dirname(os.path.abspath(__file__))
+
+ def _run(command):
+ return subprocess.check_output(command, cwd=cwd).decode('ascii').strip()
+ sha = 'N/A'
+ diff = "clean"
+ branch = 'N/A'
+ try:
+ sha = _run(['git', 'rev-parse', 'HEAD'])
+ subprocess.check_output(['git', 'diff'], cwd=cwd)
+ diff = _run(['git', 'diff-index', 'HEAD'])
+ diff = "has uncommited changes" if diff else "clean"
+ branch = _run(['git', 'rev-parse', '--abbrev-ref', 'HEAD'])
+ except Exception:
+ pass
+ message = f"sha: {sha}, status: {diff}, branch: {branch}"
+ return message
+
+
+def collate_fn(batch):
+ # import ipdb; ipdb.set_trace()
+ batch = list(zip(*batch))
+ batch[0] = nested_tensor_from_tensor_list(batch[0])
+ return tuple(batch)
+
+
+def _max_by_axis(the_list):
+ # type: (List[List[int]]) -> List[int]
+ maxes = the_list[0]
+ for sublist in the_list[1:]:
+ for index, item in enumerate(sublist):
+ maxes[index] = max(maxes[index], item)
+ return maxes
+
+
+class NestedTensor(object):
+ def __init__(self, tensors, mask: Optional[Tensor]):
+ self.tensors = tensors
+ self.mask = mask
+ if mask == 'auto':
+ self.mask = torch.zeros_like(tensors).to(tensors.device)
+ if self.mask.dim() == 3:
+ self.mask = self.mask.sum(0).to(bool)
+ elif self.mask.dim() == 4:
+ self.mask = self.mask.sum(1).to(bool)
+ else:
+ raise ValueError("tensors dim must be 3 or 4 but {}({})".format(self.tensors.dim(), self.tensors.shape))
+
+ def imgsize(self):
+ res = []
+ for i in range(self.tensors.shape[0]):
+ mask = self.mask[i]
+ maxH = (~mask).sum(0).max()
+ maxW = (~mask).sum(1).max()
+ res.append(torch.Tensor([maxH, maxW]))
+ return res
+
+ def to(self, device):
+ # type: (Device) -> NestedTensor # noqa
+ cast_tensor = self.tensors.to(device)
+ mask = self.mask
+ if mask is not None:
+ assert mask is not None
+ cast_mask = mask.to(device)
+ else:
+ cast_mask = None
+ return NestedTensor(cast_tensor, cast_mask)
+
+ def to_img_list_single(self, tensor, mask):
+ assert tensor.dim() == 3, "dim of tensor should be 3 but {}".format(tensor.dim())
+ maxH = (~mask).sum(0).max()
+ maxW = (~mask).sum(1).max()
+ img = tensor[:, :maxH, :maxW]
+ return img
+
+ def to_img_list(self):
+ """remove the padding and convert to img list
+
+ Returns:
+ [type]: [description]
+ """
+ if self.tensors.dim() == 3:
+ return self.to_img_list_single(self.tensors, self.mask)
+ else:
+ res = []
+ for i in range(self.tensors.shape[0]):
+ tensor_i = self.tensors[i]
+ mask_i = self.mask[i]
+ res.append(self.to_img_list_single(tensor_i, mask_i))
+ return res
+
+ @property
+ def device(self):
+ return self.tensors.device
+
+ def decompose(self):
+ return self.tensors, self.mask
+
+ def __repr__(self):
+ return str(self.tensors)
+
+ @property
+ def shape(self):
+ return {
+ 'tensors.shape': self.tensors.shape,
+ 'mask.shape': self.mask.shape
+ }
+
+
+def nested_tensor_from_tensor_list(tensor_list: List[Tensor]):
+ # TODO make this more general
+ if tensor_list[0].ndim == 3:
+ if torchvision._is_tracing():
+ # nested_tensor_from_tensor_list() does not export well to ONNX
+ # call _onnx_nested_tensor_from_tensor_list() instead
+ return _onnx_nested_tensor_from_tensor_list(tensor_list)
+
+ # TODO make it support different-sized images
+ max_size = _max_by_axis([list(img.shape) for img in tensor_list])
+ # min_size = tuple(min(s) for s in zip(*[img.shape for img in tensor_list]))
+ batch_shape = [len(tensor_list)] + max_size
+ b, c, h, w = batch_shape
+ dtype = tensor_list[0].dtype
+ device = tensor_list[0].device
+ tensor = torch.zeros(batch_shape, dtype=dtype, device=device)
+ mask = torch.ones((b, h, w), dtype=torch.bool, device=device)
+ for img, pad_img, m in zip(tensor_list, tensor, mask):
+ pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ m[: img.shape[1], :img.shape[2]] = False
+ else:
+ raise ValueError('not supported')
+ return NestedTensor(tensor, mask)
+
+
+# _onnx_nested_tensor_from_tensor_list() is an implementation of
+# nested_tensor_from_tensor_list() that is supported by ONNX tracing.
+@torch.jit.unused
+def _onnx_nested_tensor_from_tensor_list(tensor_list: List[Tensor]) -> NestedTensor:
+ max_size = []
+ for i in range(tensor_list[0].dim()):
+ max_size_i = torch.max(torch.stack([img.shape[i] for img in tensor_list]).to(torch.float32)).to(torch.int64)
+ max_size.append(max_size_i)
+ max_size = tuple(max_size)
+
+ # work around for
+ # pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img)
+ # m[: img.shape[1], :img.shape[2]] = False
+ # which is not yet supported in onnx
+ padded_imgs = []
+ padded_masks = []
+ for img in tensor_list:
+ padding = [(s1 - s2) for s1, s2 in zip(max_size, tuple(img.shape))]
+ padded_img = torch.nn.functional.pad(img, (0, padding[2], 0, padding[1], 0, padding[0]))
+ padded_imgs.append(padded_img)
+
+ m = torch.zeros_like(img[0], dtype=torch.int, device=img.device)
+ padded_mask = torch.nn.functional.pad(m, (0, padding[2], 0, padding[1]), "constant", 1)
+ padded_masks.append(padded_mask.to(torch.bool))
+
+ tensor = torch.stack(padded_imgs)
+ mask = torch.stack(padded_masks)
+
+ return NestedTensor(tensor, mask=mask)
+
+
+def setup_for_distributed(is_master):
+ """
+ This function disables printing when not in master process
+ """
+ import builtins as __builtin__
+ builtin_print = __builtin__.print
+
+ def print(*args, **kwargs):
+ force = kwargs.pop('force', False)
+ if is_master or force:
+ builtin_print(*args, **kwargs)
+
+ __builtin__.print = print
+
+
+def is_dist_avail_and_initialized():
+ if not dist.is_available():
+ return False
+ if not dist.is_initialized():
+ return False
+ return True
+
+
+def get_world_size():
+ if not is_dist_avail_and_initialized():
+ return 1
+ return dist.get_world_size()
+
+
+def get_rank():
+ if not is_dist_avail_and_initialized():
+ return 0
+ return dist.get_rank()
+
+
+def is_main_process():
+ return get_rank() == 0
+
+
+def save_on_master(*args, **kwargs):
+ if is_main_process():
+ torch.save(*args, **kwargs)
+
+def init_distributed_mode(args):
+ if 'WORLD_SIZE' in os.environ and os.environ['WORLD_SIZE'] != '': # 'RANK' in os.environ and
+ args.rank = int(os.environ["RANK"])
+ args.world_size = int(os.environ['WORLD_SIZE'])
+ args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
+
+ # launch by torch.distributed.launch
+ # Single node
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 1 --rank 0 ...
+ # Multi nodes
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 0 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
+ # python -m torch.distributed.launch --nproc_per_node=8 main.py --world-size 2 --rank 1 --dist-url 'tcp://IP_OF_NODE0:FREEPORT' ...
+ # args.rank = int(os.environ.get('OMPI_COMM_WORLD_RANK'))
+ # local_world_size = int(os.environ['GPU_PER_NODE_COUNT'])
+ # args.world_size = args.world_size * local_world_size
+ # args.gpu = args.local_rank = int(os.environ['LOCAL_RANK'])
+ # args.rank = args.rank * local_world_size + args.local_rank
+ print('world size: {}, rank: {}, local rank: {}'.format(args.world_size, args.rank, args.local_rank))
+ print(json.dumps(dict(os.environ), indent=2))
+ elif 'SLURM_PROCID' in os.environ:
+ args.rank = int(os.environ['SLURM_PROCID'])
+ args.gpu = args.local_rank = int(os.environ['SLURM_LOCALID'])
+ args.world_size = int(os.environ['SLURM_NPROCS'])
+
+ if os.environ.get('HAND_DEFINE_DIST_URL', 0) == '1':
+ pass
+ else:
+ import util.hostlist as uh
+ nodenames = uh.parse_nodelist(os.environ['SLURM_JOB_NODELIST'])
+ gpu_ids = [int(node[3:]) for node in nodenames]
+ fixid = int(os.environ.get('FIX_DISTRIBUTED_PORT_NUMBER', 0))
+ # fixid += random.randint(0, 300)
+ port = str(3137 + int(min(gpu_ids)) + fixid)
+ args.dist_url = "tcp://{ip}:{port}".format(ip=uh.nodename_to_ip(nodenames[0]), port=port)
+
+ print('world size: {}, world rank: {}, local rank: {}, device_count: {}'.format(args.world_size, args.rank, args.local_rank, torch.cuda.device_count()))
+
+
+ else:
+ print('Not using distributed mode')
+ args.distributed = False
+ args.world_size = 1
+ args.rank = 0
+ args.local_rank = 0
+ return
+
+ print("world_size:{} rank:{} local_rank:{}".format(args.world_size, args.rank, args.local_rank))
+ args.distributed = True
+ torch.cuda.set_device(args.local_rank)
+ args.dist_backend = 'nccl'
+ print('| distributed init (rank {}): {}'.format(args.rank, args.dist_url), flush=True)
+
+ torch.distributed.init_process_group(
+ backend=args.dist_backend,
+ world_size=args.world_size,
+ rank=args.rank,
+ init_method=args.dist_url,
+ )
+
+ print("Before torch.distributed.barrier()")
+ torch.distributed.barrier()
+ print("End torch.distributed.barrier()")
+ setup_for_distributed(args.rank == 0)
+
+
+@torch.no_grad()
+def accuracy(output, target, topk=(1,)):
+ """Computes the precision@k for the specified values of k"""
+ if target.numel() == 0:
+ return [torch.zeros([], device=output.device)]
+ maxk = max(topk)
+ batch_size = target.size(0)
+
+ _, pred = output.topk(maxk, 1, True, True)
+ pred = pred.t()
+ correct = pred.eq(target.view(1, -1).expand_as(pred))
+
+ res = []
+ for k in topk:
+ correct_k = correct[:k].view(-1).float().sum(0)
+ res.append(correct_k.mul_(100.0 / batch_size))
+ return res
+
+@torch.no_grad()
+def accuracy_onehot(pred, gt):
+ """_summary_
+
+ Args:
+ pred (_type_): n, c
+ gt (_type_): n, c
+ """
+ tp = ((pred - gt).abs().sum(-1) < 1e-4).float().sum()
+ acc = tp / gt.shape[0] * 100
+ return acc
+
+
+
+
+
+def interpolate(input, size=None, scale_factor=None, mode="nearest", align_corners=None):
+ # type: (Tensor, Optional[List[int]], Optional[float], str, Optional[bool]) -> Tensor
+ """
+ Equivalent to nn.functional.interpolate, but with support for empty batch sizes.
+ This will eventually be supported natively by PyTorch, and this
+ class can go away.
+ """
+ if __torchvision_need_compat_flag < 0.7:
+ if input.numel() > 0:
+ return torch.nn.functional.interpolate(
+ input, size, scale_factor, mode, align_corners
+ )
+
+ output_shape = _output_size(2, input, size, scale_factor)
+ output_shape = list(input.shape[:-2]) + list(output_shape)
+ return _new_empty_tensor(input, output_shape)
+ else:
+ return torchvision.ops.misc.interpolate(input, size, scale_factor, mode, align_corners)
+
+
+
+class color_sys():
+ def __init__(self, num_colors) -> None:
+ self.num_colors = num_colors
+ colors=[]
+ for i in np.arange(0., 360., 360. / num_colors):
+ hue = i/360.
+ lightness = (50 + np.random.rand() * 10)/100.
+ saturation = (90 + np.random.rand() * 10)/100.
+ colors.append(tuple([int(j*255) for j in colorsys.hls_to_rgb(hue, lightness, saturation)]))
+ self.colors = colors
+
+ def __call__(self, idx):
+ return self.colors[idx]
+
+def inverse_sigmoid(x, eps=1e-3):
+ x = x.clamp(min=0, max=1)
+ x1 = x.clamp(min=eps)
+ x2 = (1 - x).clamp(min=eps)
+ return torch.log(x1/x2)
+
+def clean_state_dict(state_dict):
+ new_state_dict = OrderedDict()
+ for k, v in state_dict.items():
+ if k[:7] == 'module.':
+ k = k[7:] # remove `module.`
+ new_state_dict[k] = v
+ return new_state_dict
\ No newline at end of file
diff --git a/src/utils/helper.py b/src/utils/helper.py
index bfa5818..98bcdf8 100644
--- a/src/utils/helper.py
+++ b/src/utils/helper.py
@@ -9,6 +9,8 @@ import os.path as osp
import torch
from collections import OrderedDict
import numpy as np
+from scipy.spatial import ConvexHull # pylint: disable=E0401,E0611
+from typing import Union
import cv2
from ..modules.spade_generator import SPADEDecoder
@@ -18,6 +20,27 @@ from ..modules.appearance_feature_extractor import AppearanceFeatureExtractor
from ..modules.stitching_retargeting_network import StitchingRetargetingNetwork
+def tensor_to_numpy(data: Union[np.ndarray, torch.Tensor]) -> np.ndarray:
+ """transform torch.Tensor into numpy.ndarray"""
+ if isinstance(data, torch.Tensor):
+ return data.data.cpu().numpy()
+ return data
+
+def calc_motion_multiplier(
+ kp_source: Union[np.ndarray, torch.Tensor],
+ kp_driving_initial: Union[np.ndarray, torch.Tensor]
+) -> float:
+ """calculate motion_multiplier based on the source image and the first driving frame"""
+ kp_source_np = tensor_to_numpy(kp_source)
+ kp_driving_initial_np = tensor_to_numpy(kp_driving_initial)
+
+ source_area = ConvexHull(kp_source_np.squeeze(0)).volume
+ driving_area = ConvexHull(kp_driving_initial_np.squeeze(0)).volume
+ motion_multiplier = np.sqrt(source_area) / np.sqrt(driving_area)
+ # motion_multiplier = np.cbrt(source_area) / np.cbrt(driving_area)
+
+ return motion_multiplier
+
def suffix(filename):
"""a.jpg -> jpg"""
pos = filename.rfind(".")
@@ -163,3 +186,11 @@ def is_square_video(video_path):
# gr.Info(f"Uploaded video is not square, force do crop (driving) to be True")
return width == height
+
+def clean_state_dict(state_dict):
+ new_state_dict = OrderedDict()
+ for k, v in state_dict.items():
+ if k[:7] == 'module.':
+ k = k[7:] # remove `module.`
+ new_state_dict[k] = v
+ return new_state_dict
diff --git a/src/utils/landmark_runner.py b/src/utils/human_landmark_runner.py
similarity index 100%
rename from src/utils/landmark_runner.py
rename to src/utils/human_landmark_runner.py
diff --git a/src/utils/resources/clip_embedding_68.pkl b/src/utils/resources/clip_embedding_68.pkl
new file mode 100644
index 0000000..d69ca7f
Binary files /dev/null and b/src/utils/resources/clip_embedding_68.pkl differ
diff --git a/src/utils/resources/clip_embedding_9.pkl b/src/utils/resources/clip_embedding_9.pkl
new file mode 100644
index 0000000..2b1e6ae
Binary files /dev/null and b/src/utils/resources/clip_embedding_9.pkl differ
diff --git a/src/utils/video.py b/src/utils/video.py
index a6d06fa..2e34e6d 100644
--- a/src/utils/video.py
+++ b/src/utils/video.py
@@ -59,8 +59,9 @@ def video2gif(video_fp, fps=30, size=256):
# use the palette to generate the gif
cmd = f'ffmpeg -i "{video_fp}" -i "{palette_wfp}" -filter_complex "fps={fps},scale={size}:-1:flags=lanczos[x];[x][1:v]paletteuse" "{gif_wfp}" -y'
exec_cmd(cmd)
+ return gif_wfp
else:
- print(f'video_fp: {video_fp} not exists!')
+ raise FileNotFoundError(f"video_fp: {video_fp} not exists!")
def merge_audio_video(video_fp, audio_fp, wfp):