diff --git a/speed.py b/speed.py index 3cad248..c4ed93e 100644 --- a/speed.py +++ b/speed.py @@ -6,10 +6,13 @@ Benchmark the inference speed of each module in LivePortrait. TODO: heavy GPT style, need to refactor """ -import yaml import torch +torch._dynamo.config.suppress_errors = True # Suppress errors and fall back to eager execution + +import yaml import time import numpy as np + from src.utils.helper import load_model, concat_feat from src.config.inference_config import InferenceConfig @@ -47,11 +50,11 @@ def load_and_compile_models(cfg, model_config): """ Load and compile models for inference """ - appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, cfg.device, 'appearance_feature_extractor') - motion_extractor = load_model(cfg.checkpoint_M, model_config, cfg.device, 'motion_extractor') - warping_module = load_model(cfg.checkpoint_W, model_config, cfg.device, 'warping_module') - spade_generator = load_model(cfg.checkpoint_G, model_config, cfg.device, 'spade_generator') - stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, cfg.device, 'stitching_retargeting_module') + appearance_feature_extractor = load_model(cfg.checkpoint_F, model_config, cfg.device_id, 'appearance_feature_extractor') + motion_extractor = load_model(cfg.checkpoint_M, model_config, cfg.device_id, 'motion_extractor') + warping_module = load_model(cfg.checkpoint_W, model_config, cfg.device_id, 'warping_module') + spade_generator = load_model(cfg.checkpoint_G, model_config, cfg.device_id, 'spade_generator') + stitching_retargeting_module = load_model(cfg.checkpoint_S, model_config, cfg.device_id, 'stitching_retargeting_module') models_with_params = [ ('Appearance Feature Extractor', appearance_feature_extractor),