mirror of
https://github.com/KwaiVGI/LivePortrait.git
synced 2024-12-22 20:42:38 +00:00
137 lines
5.7 KiB
Python
137 lines
5.7 KiB
Python
|
# coding: utf-8
|
||
|
|
||
|
"""
|
||
|
The entrance of the gradio
|
||
|
"""
|
||
|
|
||
|
import os
|
||
|
import os.path as osp
|
||
|
import gradio as gr
|
||
|
import tyro
|
||
|
from src.utils.helper import load_description
|
||
|
from src.gradio_pipeline import GradioPipeline
|
||
|
from src.config.crop_config import CropConfig
|
||
|
from src.config.argument_config import ArgumentConfig
|
||
|
from src.config.inference_config import InferenceConfig
|
||
|
|
||
|
|
||
|
def partial_fields(target_class, kwargs):
|
||
|
return target_class(**{k: v for k, v in kwargs.items() if hasattr(target_class, k)})
|
||
|
|
||
|
|
||
|
# set tyro theme
|
||
|
tyro.extras.set_accent_color("bright_cyan")
|
||
|
args = tyro.cli(ArgumentConfig)
|
||
|
|
||
|
# specify configs for inference
|
||
|
inference_cfg = partial_fields(InferenceConfig, args.__dict__) # use attribute of args to initial InferenceConfig
|
||
|
crop_cfg = partial_fields(CropConfig, args.__dict__) # use attribute of args to initial CropConfig
|
||
|
gradio_pipeline = GradioPipeline(
|
||
|
inference_cfg=inference_cfg,
|
||
|
crop_cfg=crop_cfg,
|
||
|
args=args
|
||
|
)
|
||
|
# assets
|
||
|
title_md = "assets/gradio_title.md"
|
||
|
example_portrait_dir = "assets/examples/source"
|
||
|
example_video_dir = "assets/examples/driving"
|
||
|
data_examples = [
|
||
|
[osp.join(example_portrait_dir, "s1.jpg"), osp.join(example_video_dir, "d1.mp4"), True, True, True],
|
||
|
[osp.join(example_portrait_dir, "s2.jpg"), osp.join(example_video_dir, "d2.mp4"), True, True, True],
|
||
|
[osp.join(example_portrait_dir, "s3.jpg"), osp.join(example_video_dir, "d5.mp4"), True, True, True],
|
||
|
[osp.join(example_portrait_dir, "s5.jpg"), osp.join(example_video_dir, "d6.mp4"), True, True, True],
|
||
|
[osp.join(example_portrait_dir, "s7.jpg"), osp.join(example_video_dir, "d7.mp4"), True, True, True],
|
||
|
]
|
||
|
#################### interface logic ####################
|
||
|
# Define components first
|
||
|
eye_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target eye-close ratio")
|
||
|
lip_retargeting_slider = gr.Slider(minimum=0, maximum=0.8, step=0.01, label="target lip-close ratio")
|
||
|
output_image = gr.Image(label="The animated image with the given eye-close and lip-close ratio.", type="numpy")
|
||
|
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
||
|
gr.HTML(load_description(title_md))
|
||
|
gr.Markdown(load_description("assets/gradio_description_upload.md"))
|
||
|
with gr.Row():
|
||
|
with gr.Accordion(open=True, label="Reference Portrait"):
|
||
|
image_input = gr.Image(label="Please upload the reference portrait here.", type="filepath")
|
||
|
with gr.Accordion(open=True, label="Driving Video"):
|
||
|
video_input = gr.Video(label="Please upload the driving video here.")
|
||
|
gr.Markdown(load_description("assets/gradio_description_animation.md"))
|
||
|
with gr.Row():
|
||
|
with gr.Accordion(open=True, label="Animation Options"):
|
||
|
with gr.Row():
|
||
|
flag_relative_input = gr.Checkbox(value=True, label="relative pose")
|
||
|
flag_remap_input = gr.Checkbox(value=True, label="paste-back")
|
||
|
flag_do_crop_input = gr.Checkbox(value=True, label="do crop")
|
||
|
with gr.Row():
|
||
|
process_button_animation = gr.Button("🚀 Animate", variant="primary")
|
||
|
with gr.Row():
|
||
|
with gr.Column():
|
||
|
with gr.Accordion(open=True, label="The animated video in the original image space"):
|
||
|
output_video = gr.Video(label="The animated video after pasted back.")
|
||
|
with gr.Column():
|
||
|
with gr.Accordion(open=True, label="The animated video"):
|
||
|
output_video_concat = gr.Video(label="The animated video and driving video.")
|
||
|
with gr.Row():
|
||
|
process_button_reset = gr.ClearButton([image_input, video_input, output_video, output_video_concat], value="🧹 Clear")
|
||
|
with gr.Row():
|
||
|
# Examples
|
||
|
gr.Markdown("## You could choose the examples below ⬇️")
|
||
|
with gr.Row():
|
||
|
gr.Examples(
|
||
|
examples=data_examples,
|
||
|
inputs=[
|
||
|
image_input,
|
||
|
video_input,
|
||
|
flag_relative_input,
|
||
|
flag_do_crop_input,
|
||
|
flag_remap_input
|
||
|
],
|
||
|
examples_per_page=5
|
||
|
)
|
||
|
gr.Markdown(load_description("assets/gradio_description_retargeting.md"))
|
||
|
with gr.Row():
|
||
|
with gr.Column():
|
||
|
process_button_close_ratio = gr.Button("🤖 Calculate the eye-close and lip-close ratio")
|
||
|
process_button_retargeting = gr.Button("🚗 Retargeting", variant="primary")
|
||
|
process_button_reset_retargeting = gr.ClearButton([output_image, eye_retargeting_slider, lip_retargeting_slider], value="🧹 Clear")
|
||
|
# with gr.Column():
|
||
|
eye_retargeting_slider.render()
|
||
|
lip_retargeting_slider.render()
|
||
|
with gr.Column():
|
||
|
with gr.Accordion(open=True, label="Eye and lip Retargeting Result"):
|
||
|
output_image.render()
|
||
|
# binding functions for buttons
|
||
|
process_button_close_ratio.click(
|
||
|
fn=gradio_pipeline.prepare_retargeting,
|
||
|
inputs=image_input,
|
||
|
outputs=[eye_retargeting_slider, lip_retargeting_slider],
|
||
|
show_progress=True
|
||
|
)
|
||
|
process_button_retargeting.click(
|
||
|
fn=gradio_pipeline.execute_image,
|
||
|
inputs=[eye_retargeting_slider, lip_retargeting_slider],
|
||
|
outputs=output_image,
|
||
|
show_progress=True
|
||
|
)
|
||
|
process_button_animation.click(
|
||
|
fn=gradio_pipeline.execute_video,
|
||
|
inputs=[
|
||
|
image_input,
|
||
|
video_input,
|
||
|
flag_relative_input,
|
||
|
flag_do_crop_input,
|
||
|
flag_remap_input
|
||
|
],
|
||
|
outputs=[output_video, output_video_concat],
|
||
|
show_progress=True
|
||
|
)
|
||
|
process_button_reset.click()
|
||
|
process_button_reset_retargeting
|
||
|
##########################################################
|
||
|
|
||
|
demo.launch(
|
||
|
server_name=args.server_name,
|
||
|
server_port=args.server_port,
|
||
|
share=args.share,
|
||
|
)
|